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ABSTRACT
The individual layers in the Internet protocol stack provide com-
munication abstractions that expose a limited set of operations and
information and otherwise hide layer-internal and lower-layer com-
plexities. This paper argues that the communication abstractions
provided by the layers through these interfaces – especially the net-
work/transport and transport/application layer interfaces – do not
support efficient and performant communication in an increasingly
dynamic Internet. This paper proposes to extend the established in-
terfaces by exposing optional, generic and technology-independent
information and operations that allow the development of layer-
internal mechanisms to improve operation and performance of the
Internet protocols while maintaining the layering abstraction.

1. INTRODUCTION
In the layered Internet model, transport protocols – at the “trans-

port layer” – provide communication primitives that let applica-
tions exchange data. They also provide some support functions
that let applications manage individual instances of communication
primitives. Transport protocols provide their service on top of IP
– the “network layer.” Different transport protocols provide com-
munication primitives with different characteristics. TCP [11], for
example, provides a communication primitive that is a congestion-
and flow-controlled, reliable, in-order byte stream. UDP [12] pro-
vides a different communication primitive that lets applications ex-
change individual messages in an unreliable, unordered fashion
without flow or congestion control. DCCP [13] and SCTP [14] pro-
vide communication primitives with yet different characteristics.

An important feature of the layered structure of the Internet pro-
tocols is that each layer provides an abstract interface to its users,
which are usually other (“higher”) layers, including user applica-
tions. This interface typically offers a number of well-defined op-
erations and exposes a set of well-defined information. It also hides
other functionality present within a layer and below it. Conse-
quently, a layer provides a generalized and idealized communica-
tion abstraction to its users, which often simplifies implementation
of functionality on top of a layer.
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The communication primitives provided by the transport layer
to applications are one example of such a communication abstrac-
tion. A second example is the interface that the network layer
provides to the transport protocols. It offers functions to deliver
packets in some order, without guaranteeing delivery or protecting
against duplication or loss. It also offers functions that expose some
well-defined pieces of network-layer information. At the same
time, the communication abstraction provided by the network layer
hides other complexities from its users, i.e., the transport protocols.
These include, for example, the establishment and management of
end-to-end routing paths, configuration of network-layer addresses,
and fragmentation and reassembly of packets, among others.

The concept of layers that provide communication abstractions
in the form of simplified and generalized “virtual machines” that
abstract away layer-internal or underlying complexities is certainly
useful. However, it can also introduce limitations, when the inter-
face does not offer specific functions or expose certain pieces of
information that would be of benefit to its users.

The interfaces defined between the layers in the Internet protocol
stack currently have such limitations. Section 2 discusses how the
assumptions that were made at the time these interfaces were de-
signed no longer accurately reflect the realities of the current, much
more dynamic Internet. It also analyzes how these limitations can
cause operational problems and limit performance and efficiency.
Section 3 makes an argument for richer, more expressive commu-
nication abstractions, i.e., interfaces between layers.

It is important to note that this paper argues that the interfaces be-
tween layers should provide additional pieces of generic, technology-
independent information that let protocols be more efficient and ef-
fective, and less prone to behave incorrectly due to faulty assump-
tions. This paper does not argue for specific niche optimizations of
particular transports over particular link layers, such as “TCP over
802.11b” or “SCTP over Bluetooth.” Instead, it proposes to iden-
tify a set of network- and lower-layer information that is generic
and can be provided in different ways by different specific under-
lying technologies.

2. CURRENT TRANSPORT-LAYER
INTERFACES

The previous section has described how layers in the Internet
protocol stack can be seen as “virtual machines” that expose generic
communication abstractions to their users. This section discusses
two of these interfaces – between the network and transport layers,
and between the transport and application layers – in more detail.
Specifically, it argues that some of the assumptions underlying the
design of these interfaces no longer accurately reflect the network-



ing environment in the current Internet. This mismatch limits the
performance and efficiency of the Internet protocols.

The communication abstraction provided by IP at the network
layer delivers packets in an unordered, unreliable manner and does
not protect against duplication. The users of this abstraction, i.e.,
the transport protocols, have made additional assumptions in the
past about the abstraction provided by the network layer. Many of
these assumptions are critical to the effective operation of important
transport mechanisms, such as congestion control, flow control or
reliability. These assumptions include, for example, that hosts re-
main at network locations identified by an IP address (“their” IP
address) on timescales that are orders of magnitude larger than the
duration of a communication instance. Another such assumption
is that packets that flow from a source host to a destination host
mostly follow the same path and that changes to that path occur
on timescales that are orders of magnitude larger than the round-
trip time (RTT) between the two hosts. Similarly, transport mech-
anisms have assumed that the characteristics of such paths, such as
bandwidth, delay, reordering and loss probabilities, also change on
timescales much larger than the RTT.

Note that these assumptions were valid for the Internet at the
time that the interface between network and transport layer and
the corresponding layer-internal functions were initially designed.
However, in the current Internet, many of these assumptions are
no longer universally true, and the rate at which such assumptions
do not hold is increasing. This is, because the Internet has be-
come much more dynamic in recent years. Mobile hosts and whole
subnetworks have started to move between network locations on
relatively short timescales. A growing number of hosts are multi-
homed, i.e., are present at multiple network locations at the same
time, connected through links with possibly very different prop-
erties. The Internet has incorporated new link technologies with
characteristics that are much more dynamic than in the past, due to
functionality such as link-layer retransmissions, adaptive coding or
support for link-local mobility. This trend is likely to continue and
even accelerate in the future.

Several extensions to the internal functionality of the network
layer, such as Mobile IP [19], NEMO [20], HIP [21] or SHIM6 [22],
support efficient IP communication in such dynamic environments.
They generally expose static tags to the transport layer, instead of
directly exposing IP addresses, and internally manage the changes
to IP addresses due to mobility or multihoming. This approach
maintains the traditional interface between network and transport
layers, isolating the transports from the dynamic effects present at
and below the network layer, similar to how transports remain un-
aware of routing changes or packet fragmentation. This approach
allows existing transport protocols to continue to operate without
modifications.

This isolation, however, comes at a cost, because the traditional
communication abstraction maintained by these new network-layer
extensions hides information that transport-layer protocols should
act on. As described above, many transport mechanisms, such as
congestion window estimation [8], RTT measurements [9] or path
MTU discovery [10], are not agile enough to properly handle the
significant instantaneous path changes that these network-layer ex-
tensions introduce. This, in turn, can decrease the effectiveness of
important transport mechanisms, such as congestion control. Con-
sequently, although existing transports can operate on top of these
network-layer extensions to some degree, their performance and
efficiency decreases, as documented in several studies [15, 26, 27].

Before discussing ways to address these issues in Section 3, note
that the interface between the transport and applications layers has
similar limitations that cause similar problems. The most common

operating systems today implement the “socket” API (derived from
BSD UNIX) to provide applications with access to transport proto-
col services in much the same way as file I/O. This familiarity and
convenience is one reason for the popularity of the socket API.

The similarity to file I/O, however, is also one weakness of the
socket API, because it hides nearly all network-specific informa-
tion, such as packet loss or flow control events, from the applica-
tions. Although some systems offer mechanisms to obtain such
information, such as the proc file system on Linux, these inter-
faces are extremely platform-specific. One of the few standard-
ized, cross-platform interfaces to transport- and network-layer in-
formation is through the Simple Network Management Protocol
(SNMP) [16], which allows applications to access standardized
sets of information about network- and transport-layer information,
such as TCP statistics [7]. However, SNMP is not typically avail-
able on most hosts, and requiring its use for applications to acquire
information about their own transport connections is an extremely
cumbersome solution.

In summary, both the interface between the network and trans-
port layers and the interface between the transport and application
layers fail to expose sufficient information that would allow trans-
port mechanisms and applications to operate efficiently in a dy-
namic Internet. This paper argues that refining the interactivity be-
tween the protocol layers – in a way that is independent of specific
link-, network, and transport-layer extensions and technologies –
can enable better performance and operation while maintaining the
benefits that the layering abstraction provides.

3. MORE EXPRESSIVE
TRANSPORT-LAYER INTERFACES

The simple, general purpose interface between the network and
transport layers is one of the key features that has guaranteed the
evolvability of the Internet architecture, because it maintains the
independence of transport layers from functionality located below
it, and vice versa. Approaches for extending this core component
must therefore be broadly applicable and be of general usefulness.
Point solutions that optimize for specific deployment scenarios or
technologies are thus not relevant to this discussion.

The current interface between the network and transport layer
encompasses a relatively small set of pieces of information that be-
long to one of two types. The transport layer derives the first type of
“implicit” information from the observed behavior of the network
layer. This implicit information includes, for example, the RTT,
available bandwidth and path MTU to a destination. The network
layer signals the second type of “explicit” information directly to
the transport protocols. Explicit information includes, for example,
host, network and protocol unreachable indications derived from
ICMP [1]. The deprecated “source quench” ICMP message was
another such piece of explicit information.

It is important to note that the idea of extending the interfaces
between layers in the protocol stack is not new. For example, a
large number of research papers have presented and analyzed TCP
extensions that attempt to improve performance over specific link
technologies, such as IEEE 802.11, satellites or cellular links, to
name a few. Although the performance benefits can be substan-
tial, many of these “cross-layer optimizations” have the signifi-
cant drawback that they encode knowledge about the specifics of
a single underlying link technology inside the transport protocol.
In essence, they eliminate the common base that IP provides as
a network-layer abstraction, and result in different flavors of TCP
that are each optimized for particular link technologies. This can be
seen as a “layering violation,” because TCP now effectively relies



on knowledge of specific link layers, instead of a unifying network
layer. In addition, similar modifications must be made to optimize
other transport protocols over each link technology. Given the in-
creasing number of transport protocols and the vastly increasing
number of deployed link technologies, this approach quickly leads
to a very complex system. Hence, such optimizations for limited
scenarios are not appropriate for a general-purpose Internet.

This paper thus argues that the network-layer abstraction is im-
portant to maintain, because it establishes independence of trans-
port layers from functionality located below the network layer. The
current practice of keeping transport mechanisms mostly indepen-
dent of the specific characteristics of different lower-layers is cor-
rect and should be retained. The goal is to identify a generic,
technology-independent set of network- and lower-layer informa-
tion that improves transport performance and operation and can be
provided in different ways by different specific underlying tech-
nologies.

In addition, it is important that these additional pieces of infor-
mation or operations should be optional, i.e., not required for the
correct operation of transport protocols. This enables incremental,
uncoordinated deployment of layers that provide the extended in-
terface and layers that utilize it. For example, a traditional transport
protocol implementation can operate on top of a network layer that
provides some additional pieces of information without change in
functionality or performance. Likewise, an improved transport pro-
tocol must be able to operate on top of a network layer that does not
provide an enhanced set of lower-layer information.

In addition to these two requirements, the Internet Architecture
Board (IAB) has described architectural issues and has provided
examples of appropriate and inappropriate uses of inter-layer indi-
cations [6]. Although their discussion blurs the distinction between
indications originating at the link and network layers to some de-
gree, it still contains useful observations that solutions in this space
should consider.

One example of an improvement that follows the approach de-
scribed above is the proposed TCP response mechanism after re-
ceiving a “path characteristics have changed” signal from lower
layers [5]. This signal has a well-defined meaning that represents
the implication of several types of events at the network and lower
layers. For example, it can be generated after Mobile IP or HIP
mobility events, when link status changes [28], or even when route
computation changes the path, in addition to other possibilities.
The proposed TCP response mechanism does not differentiate which
underlying mechanism generated the signal – the response is al-
ways the same and only depends on the state of the connection
that receives such a signal. While transmitting, the signal causes a
connection to slow-start restart with a freshly initialized path state;
when disconnected, the signal triggers a speculative retransmission;
see [5] for details on the mechanism and the interaction with trigger
sources. Experiments with this TCP extension [15,29] have shown
that it significantly improves TCP performance and efficiency when
operating over paths with intermittent connectivity.

Other proposals in the past have introduced extensions to the in-
terface between the network and transport layer that are similarly
independent of specific technologies. For example, Explicit Con-
gestion Notification (ECN) [2] at the network layer and the corre-
sponding response mechanisms for different transport protocols are
similar in spirit. The ECN signal is well-defined and can be pro-
vided in different ways by lower layers; transport protocols act on
the signal independently of who and how it was generated. ECN is
an interesting example because it involves both inter-layer signal-
ing on a local host (passing the “congestion experienced” informa-
tion received in IP headers to the transport layer congestion control

mechanisms) and transport-layer signaling between remote peers
(relaying the “congestion experienced” information and conveying
the response indication).

Another example of such an extension is Quick-Start [3], which
is a less ambitious and more immediately practical version of the
ideas first described by the Explicit Congestion Control Protocol
(XCP) [4]. Here, routers in the network explicitly signal source
hosts the available capacity along the path to their destinations.
Transport protocols can utilize this generic, technology-independent,
network-layer information in different ways to improve operation
and performance. The Congestion Manager [17, 18] is a proposal
to share explicit information about bandwidth and congestion be-
tween related transport layer entities and the applications they are
bound to.

Similar to how giving transport protocols more information about
current network layer conditions can improve their operation and
performance, giving applications more information about the con-
ditions their transport connections experience can also improve their
operation and performance. For example, applications can imple-
ment application-layer framing [24] more effectively, if the trans-
port path MTU estimates are available to them. Applications that
implement internal timers can similarly benefit from information
about transport path round-trip time estimates.

Extensions to the interface between transport and application
layers that provide additional operations can be similarly useful.
For example, UDP-Lite [25] enables applications to specify the
number of payload bytes that the UDP-Lite checksum covers, in
addition to an otherwise normal UDP send call. Applications that
receive UDP-Lite payloads must explicitly state their willingness
to receive potentially damaged payload data. It can be beneficial
for some applications to be able to poll UDP-Lite for an estimate
of the number of damaged datagrams that are caught and discarded
based on the partial checksum, so that they can adapt their codecs
even more intelligently.

These existing examples all demonstrate that more expressive in-
terfaces between protocol layers are not a new idea, but rather an
overarching common theme that can unify several independent ef-
forts. Uniform extensions to these interfaces can greatly aid the
development of protocol enhancements that require inter-layer in-
formation and can similarly enhance the deployability and use-
fulness of such approaches, compared to the scenario-dependent
cross-layer techniques that are currently popular.

It is worth noting that although the idea of extending the inter-
faces between protocol layers in this way is simple, the difficulty
lies in the details. The unsuccessful “triggers for transport” [23]
and ALIAS efforts in the IETF bear witness to this. One key issue
is security, especially when local protocol instances act on pieces of
information provided by untrusted remote entities. Even with the
restriction that such information be advisory in nature, this prac-
tice may create an attack vector that can be exploited to interfere
with correct and efficient protocol operation, depending on the re-
sponse mechanisms that are employed. Cryptographic authentica-
tion of remote information would be an ideal but unfortunately also
infeasible solution, due to the well-known overheads of establish-
ing and maintaining a security framework, which has so far been
unsuccessful even for arguably more important uses. It may, how-
ever, be possible to mitigate potential attacks through careful de-
sign of the response mechanisms. Response mechanisms should be
robust in the presence of misleading or malicious hints. Response
mechanisms may correlate information from different sources be-
fore committing to an action, or actively attempt to verify the ac-
curacy of the reported information. It may also be possible to es-
tablish trust in a source of information – and the accuracy of the



information of that source – based on an accumulated history of
past behavior.

4. CONCLUSION
The individual layers in the Internet protocol stack provide com-

munication abstractions that expose a limited set of operations and
information, and otherwise hide layer-internal and lower-layer com-
plexities. This paper has argued that the communication abstrac-
tions provided by the layers through these interfaces – especially
the network/transport and transport/application layer interfaces –
do not support efficient and performant communication in an in-
creasingly dynamic Internet.

This paper has proposed to extend the established interfaces by
exposing optional, generic and technology-independent informa-
tion and operations that allow the development of layer-internal
mechanisms to improve operation and performance of the Internet
protocols while maintaining the layering abstractions.

Defining the exact technical means for achieving these improved
interfaces is future work that the authors believe the community
should pursue. These relatively minor extensions to the established
stack architecture promises long-term benefits greater than the mul-
titude of short-term point solutions that are frequently pursued to-
day.
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