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Abstract 
Even a fully loaded computer system, where the bottleneck resource is constantly busy, often has 

some idle capacities available on other resources. This proposal argues for using these idle ca-

pacities speculatively, increasing system performance for correct predictions. In such a system, all 

resources will ideally be constantly loaded with either regular foreground tasks, or speculative 

idle-time tasks.  

The key contribution of this proposal is a model for non-interfering use of idle resource capacity, 

based on three principles: resource prioritization between regular foreground and idle-time use, 

preemptability of idle-time processing, and isolation of speculative side effects. Current operating 

systems fail to provide all three capabilities. Without new mechanisms, processing of speculative 

tasks can delay or even starve foreground processing, and result in a decreased foreground per-

formance, instead of increasing it. 

Under the proposed model, speculative tasks only execute using otherwise idle resource capaci-

ties; the model also shields foreground processing from the side effects of their presence in the 

system. Thus, speculation can no longer delay or interfere with foreground processing. Based on 

the model, a proof-of-concept design of network extensions for idle-time service can isolate fore-

ground network packets from the presence of idle-time traffic to within 1-2% throughput. 

The remainder of this thesis will focus on idle-time support for the network file system (NFS). 

Idle-time NFS requires an extension of the current mechanism to disk I/O and storage capacity, as 

well as new mechanisms to isolate speculative side effects based on virtualization of OS state. 
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1 Introduction 
One of the main tasks of an operating system (OS) is resource management. Many computer sys-

tems have plenty of idle resource capacity, even under peak load. For any increasing workload, a 

small fraction of the total resources becomes the fully utilized system bottleneck, while other re-

sources have idle capacity available. The workload determines the bottleneck resource: it may be 

the network link for a web server, while it could be the disk for a database system. Other non-

bottleneck resources (RAM, CPU, etc.) may remain partially idle. 

The focus of this proposal is a model to utilize such idle capacities for speculative tasks, without 

interfering with or delaying regular non-speculative use. The second part of this proposal applies 

the model to design idle-time mechanisms for network service. An experimental evaluation of a 

proof-of-concept implementation of the idle-time networking mechanisms shows them to isolate 

regular foreground traffic from the presence of speculative tasks to within 1-2% throughput. 

Several studies investigate the resource utilization of systems. One reports an average of 50-70% 

of the total memory of a cluster of machines to be available [ACHARYA 1999], and approximately 

15-30 minutes between memory use peaks on a single machine. It concludes, “dips in memory 

availability (…) are likely to lead to a perception of memory being short.” Other studies focus on 

CPU utilization [MUTKA 1991][MUTTKA 1987][WYCKOFF 1998] and report that around 70% of 

the monitored machines in a network where idle. 

Idle capacities may be even larger than above studies suggest, due to their coarse metrics to de-

termine idle times (e.g. “no user logged in”, “screen saver active”, “CPU load minimal”). Short, 

transient idle times may remain undetected due to quantization effects caused by these coarse idle 

metrics. Furthermore, none of these studies monitored multiple, different resources. In cases 

where the monitored resource of a system seems busy, other resources could have significant idle 

capacities. For example, a system with a 50% loaded CPU (“not idle” according to above coarse 

metrics) may still have significant idle disk capacity – in fact, it even has a considerable idle CPU 

capacity of 50%. 

Idle resource capacity is wasted; it cannot be saved for later use. Scheduling useful work during 

idle resource periods could increase system efficiency. Ideally, all resources should be constantly 
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busy, executing either regular or speculative requests. A good speculative request is a likely future 

request issued by a regular process. Pre-execution of such a request – before it is issued explicitly 

– can hide its processing latency from the issuing process, resulting in a performance increase. 

Not all speculations are likely to be correct. Thus, it is important to shield other processing from 

their presence until a correct prediction is confirmed, and the result of the speculation can be 

made available to the system. 

To avoid interference with regular use of a resource (and thus decreasing performance), specula-

tion should be limited to periods where the resource is not busy – speculative resource use should 

only occur when resource capacity would have been idle in its absence. Ideally, the presence of 

speculative resource use in the system will thus have no impact on regular processing, neither 

preventing nor delaying it: it should be non-interfering. In the pathological case of a constantly 

busy resource, a speculative request for idle time use will starve forever. A conventional OS will 

strive to prevent starvation of any request, prohibiting idle-time use. 

Such speculative resource use is already common in some areas: One area is microprocessors 

with support for speculative branch execution. Such processors use idle execution units and 

memory bandwidth to pre-fetch and speculatively execute likely future instructions, giving total 

priority to non-speculative processing. Hardware mechanisms preempt speculative use without 

affecting regular execution, and manage speculative state, keeping it isolated until commit time 

(or discard time, for mispredictions). The key design principles of these microprocessors are pri-

oritized and preempted use of microprocessor resources, and complete isolation of the side effects 

of speculative execution. 

The focus of this proposal is mechanisms to enable such non-interfering uses of idle resource ca-

pacity. It argues that the same design principles enabling speculative branch execution on micro-

processors (prioritization, preemptability, and isolation) are necessary and sufficient to do the 

same at the OS-level. Current systems fail to provide these capabilities, because most of their re-

source schedulers do not offer prioritized, preempted access. Instead, a general-purpose OS em-

ploys simple and predictable resource schedulers, trying to provide fair service to all users and 

prevent starvation. On such systems, speculative background use of idle capacity can delay or 

even prevent regular foreground use, as the speculative workload increases. 
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A conventional OS also does not isolate all the side effects of one process from another. Without 

isolation, speculative state can interfere with regular execution. Isolation virtualizes the operating 

system state, to shield regular processing from the side effects of speculation. 

One of the main contributions of this proposal is a model for non-interfering idle-time resource 

use that encompasses both I/O and storage resources. Another challenge is inter-resource interfer-

ence, where idle-time processing on one resource delays regular use of another. Finally, integrated 

resource scheduling, where speculative tasks are scheduled depending on their idle-capacity re-

quirements, is a possible optimization to spend idle capacities more effectively. 

Later chapters of this proposal apply the model to network stack extensions supporting idle time 

use. With these extensions, routers and end systems differentiate between regular and idle-time 

transmissions: Idle-time packets are dropped or delayed in favor of regular best-effort packets, 

and only receive a diminished service. Experimental results show that these idle-time extensions 

can isolate foreground traffic from the presence of speculative transmissions to within 1-2% of 

obtainable throughput. 

One example application that benefits from such idle-time resource use is prefetching of likely fu-

ture FTP or web requests [TOUCH 1994][TOUCH 1995][PADMANABHAN 1996]. Conventional pre-

fetchers must explicitly limit their speculative transmissions, to avoid excessive interference with 

regular network traffic. Idle-time networking enables aggressive prefetching without the possibil-

ity of interference with regular network traffic. Similarly, idle-capacity use of storage resources 

(such as memory or disk space) allows the prefetch cache to grow without affecting foreground 

storage use. 

As mentioned above, the three principles establishing non-interfering idle-time use are prioritiza-

tion, preemptability, and isolation. Prioritization guarantees that a waiting regular request will 

always receive service before any idle-time one. Preemptability describes the property of imme-

diately suspending or aborting ongoing idle-time use if capacity is required to service an incom-

ing regular request. Finally, isolation shields regular use from the side effects of speculative proc-

essing until they are committed (successful speculation) or discarded. 

The proof-of-concept implementation for idle-time use presented in this proposal supports only 

prioritized and preempted network I/O and CPU use, isolation of speculative side effects is not 
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yet established. One application that requires additional mechanisms is idle-time use of the net-

work file system (NFS). To support this, the remainder of this thesis research will investigate idle-

time mechanisms for disk I/O and storage capacity, as well as integration of these new techniques 

with the existing idle-time network stack. 

Investigation of mechanisms to establish isolation between regular NFS and idle-time NFS will 

be one focus area of this research. Another key issue is inter-resource interference between the 

disk, network, and CPU subsystems. While the current mechanisms control interference between 

the CPU and network stack, their effectiveness must be confirmed in the presence of speculative 

disk use. Finally, given that idle-time NFS depends on the availability of idle capacity on multiple 

resources, it is an effective testbed to experiment with integrated scheduling, to optimize what 

speculative tasks available idle capacity is allocated to. 

Using idle resources for productive work is not a new idea. Several remote execution systems can 

detect idle (or under-utilized) remote machines, and include mechanisms to migrate part of the lo-

cal workload onto these remote hosts. Other migration systems use idle remote memory instead 

of local secondary storage. A few key differences between these systems and this proposal exist: 

First, migration systems focus on distributing the workload for a single resource (typically CPU 

or memory) – other remote resources remain idle. The proposed system tries to utilize idle capaci-

ties on all resources. Second, migration systems typically do not issue speculative tasks; the mi-

grated requests are part of the regular system workload. Third, migration systems depend on re-

mote hosts to actively donate idle resources, while this proposal can use idle local resources in a 

number of ways: Simply turn them off to save power, donate them for remote use (supporting mi-

gration systems), or use them speculatively to increase local performance. Idle capacities in a mi-

gration system never benefit the local system. 

Other techniques to increase local performance through local speculation also exist, such as file 

system optimization or read-ahead caching. However, all these systems process speculative work 

at the same priority as regular tasks. Thus, speculation can affect foreground performance, and 

speculative tasks must explicitly limit their aggressiveness to avoid decreasing non-speculative 

performance. This proposal, on the other hand, schedules speculative work at a lower priority 

than all other processing, and implicitly shields foreground tasks from the presence of speculative 

resource use. 
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The remainder of this proposal is organized as follows: Chapter 2 defines the idea of non-

interfering idle-time use for resources in detail. It identifies the key principles to support such 

idle-time use, and discusses how current OS mechanisms fail to satisfy these requirements. A de-

sign for OS extensions supporting non-interfering idle-time use form the main part of that chap-

ter, followed by a discussion of applications that benefit from idle-time use. 

Chapter 3 discusses some key challenges with offering idle-time use of resource capacity, such as 

preemption overheads, cache pollution and speculative workload generation. 

Chapter 4 applies the model to idle-time extensions for the network stack. It first presents ex-

perimental evidence that highlights how current OS mechanisms fail to provide differentiated 

network service, and identifies the key issues prohibiting such service under the current network 

model. The final part of that chapter presents a prototype implementation of idle-time extensions 

for the BSD network stack, and evaluates their effectiveness through a series of experiments. 

Related work, such as real-time systems, idle-time execution and other speculative techniques 

form the main part of Chapter 5. 

Finally, Chapter 6 presents the plan for the remainder of this thesis research, including a timeline. 

The focus will be on idle-time support for the network file system (NFS). NFS service requires 

idle-time support for CPU and network service (already existing), as well as idle-time support for 

disk I/O and storage. This dependency on multiple resources makes idle-time NFS a good candi-

date to study inter-resource interference, as well as investigate mechanisms for integrated sched-

uling.  
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2 A Model for Speculative Use of Idle Resources 
This chapter defines the idea of non-interfering idle-time use for resources in detail. It then identi-

fies the key principles required to support such idle-time use, and discusses how current OS 

mechanisms fail to follow these principles. The later sections of the chapter present OS scheduler 

extensions that enable non-interfering idle-time use. Finally, it presents several application areas 

that benefit from idle-time use. 

2.1 Introduction 

A typical computer system contains multiple resources, normally at least a CPU and some main 

memory. Usually, a system also has some persistent storage devices (e.g. disks), communication 

devices (e.g. network, modem), and user I/O devices (e.g. keyboard, display, audio). 

The resource use of processes can be seen as a request/response stream, where processes generate 

resource requests to acquire processing capacities (e.g. “read this disk block” for a disk, “send 

this packet” for the network, or “run me” for the CPU). Resources process these requests in some 

order, and may generate resource responses (e.g. “here is the block you wanted” for a disk read 

request). Note that some requests may not trigger a response, such as a “run me” request for CPU 

capacity. 

Resources can be categorized according to a number of criteria. One such categorization is ac-

cording to sharing patterns, distinguishing spatially and temporally-shared devices. 

Spatially-shared devices divide their capacity into allocation units, and can serve multiple proc-

esses concurrently. Processes must lease allocation units before use. Leased capacity is unavail-

able to others; leased capacity becomes available for reuse only after a process explicitly returns 

it. Storage capacity (e.g. disk space, memory swap space) is an example of a spatially-shared re-

source.  

A second category of resources is temporally-shared. Unlike spatially-shared resources, such re-

sources do not subdivide their capacity for concurrent use. Instead, a single process is leased the 

full resource capacity for a certain (usually fixed) period. I/O devices (e.g. network interfaces) 

and the CPU are examples of temporally-shared resources.  
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Systems may contain multiple, identical resources. For example, on a system with multiple, 

channel-bonded network interfaces, a request can use any available interface. Such a device bun-

dle gains some characteristics of a spatially-shared resource, because its components can serve 

multiple requests simultaneously. Another example is a multiprocessor, where the individual 

CPUs execute in parallel. 

Some physical devices combine aspects of temporally and spatially-shared resources. One exam-

ple is a disk drive. Its storage capacity is spatially-shared (different disk blocks allocated to dif-

ferent processes), while its I/O capacity is temporally-shared: a drive only serves a single I/O re-

quest at a time. A mechanism to support idle-time use of a disk drive must consider both these 

dimensions. 

User I/O devices (e.g. keyboard, audio) are a special subcategory of temporally-shared devices, 

for which idle-time may not be appropriate. Users explicitly control these devices, and the OS 

should not override these scheduling decisions. However, user I/O devices may share an I/O 

channel (e.g. USB) with other devices. Idle-time use of the shared channel capacity is possible if 

mechanisms treat user I/O requests as foreground use. 

In some sense, it is possible to model spatially-shared resources as temporally-shared, by treating 

each allocation unit as a separate resource with an unlimited lease time. For example, instead of 

viewing disk storage capacity as a single spatially-shared resource, from another perspective each 

disk block is a separate temporally-shared resource with an infinite lease time. Thus, schedulers 

for such resources can be similar to schedulers for temporally-shared resource bundles. 

Some OS resources are virtualized. A virtualized resource isolates its different users from one an-

other. It also presents each user with a private, virtual resource that may be larger (or otherwise 

different) than the underlying physical device. Capacity of other resources is required to support a 

virtualized resource when overcommitted. The main example of a virtualized resource is virtual 

memory (VM). VM presents each process with an isolated address space, typically larger than the 

available physical memory, by paging seldom-used parts of address spaces to secondary storage. 

Virtualized resources themselves are users of other resource capacity. The simple model presented 

in this chapter is not sufficiently powerful to completely describe such behavior. It will be ex-

tended in the remainder of this thesis research to support this capability. 
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A single-tasking OS does not require resource scheduling. The single existing process can use all 

resources as needed; unused resources remain idle. This typically leads to a low overall system 

utilization. A multi-tasking OS can increase system utilization by running multiple processes con-

currently. All processes share the CPU and other resources; the OS allocates a share of resource 

capacity to each process upon request. While this may increase execution time of a single process 

compared to the dedicated case, it improves overall system utilization. For example, when a com-

pute-bound process and a disk-bound process run concurrently, each of them is able to use re-

source capacity the other left available. A disk-bound process will spend most of its time in a 

blocked state waiting for device operations to finish. The compute-bound process can thus utilize 

the unused CPU time of the disk-bound one. Likewise, the CPU-bound process will not require 

disk access often, so the disk-bound one can utilize the disk almost fully. The net effect is that the 

aggregate execution time of the two processes can be lower when they run concurrently using 

multi-tasking, compared to running them back-to-back on a dedicated machine. In a way, a multi-

tasking OS is an example of using idle resource capacities for productive work. However, it fails 

to actively schedule requests depending on idle capacities. 

Various systems try to use idle capacity, either speculatively or non-speculatively. One established 

technique is microprocessors with support for speculative execution (see Section 5.2.3.3). Such 

CPUs use idle execution units and memory bandwidth to pre-fetch and speculatively execute 

likely future instructions. They give total priority to non-speculative processing, and have hard-

ware mechanisms to preempt speculative uses without affecting regular execution. Other hard-

ware mechanisms manage speculative state, and keep it isolated from regular execution until 

commit time (or discard time, for mispredictions). Remote execution or storage systems (see Sec-

tion 5.2.3.1) are another example of systems that try to utilize idle capacity.  

A system supporting speculation must shield the side effects of speculative tasks from the rest of 

the system until a prediction has been verified as correct. Similarly, a system to support non-

interfering use of idle resources must prioritize resource use. Speculative idle-time use requires 

both capabilities, based on principles defined in the next section. 
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2.2 Principles for Speculative Use 

Speculative use of idle capacity depends on prioritization and preemptability between regular and 

idle-time use, as well as isolation of speculative side effects. This section will formally define 

these three principles as properties of two models. Informally, these principles are: 

1. Prioritization: Never process idle-time requests while regular requests are waiting 

for service. 

2. Preemptability: Immediately preempt active idle-time use to service incoming 

regular requests. Never preempt regular requests because of idle-time use. 

3. Isolation: The side effects of a speculative request must remain hidden until they 

are committed or discarded. 

A more formal definition requires a model of resource processing. In this model, a resource is a 

tuple cpCAQR ,,,,, , where R  is the base set of possible requests, RQ ⊆  is a subset of re-

quests waiting for service, RA⊆  is a subset of active requests currently being serviced. ℑ∈C  

is the capacity of the resource expressed as an integer, ℑ→Rc :  is the capacity required to ser-

vice a given request, again expressed as an integer, and ℑ→Rp :  is a priority assignment, 

where higher priorities (integers) are served before others. 

The active capacity A of a resource cpCAQR ,,,,,  is defined as { }∑ ∈= AaacA )( . In ad-

dition, the idle capacity I  of such a resource is defined as ACI −= . 

A resource supports these operations: 

• )(qenqueue  adds a new request Rq∈ , Qq∉  to the set of waiting requests: 

{ }qQQ ∩=  

• ()start picks a request Qa∈  for service and moves it from the waiting set to the active 

set: { }aQQ =  and { }aAA ∩=  

• )(afinish  removes an active request Aa∈ from the service set: { }aAA =  



  - 10 - 

A resource must satisfy the following axioms: 

• A request cannot be both queued and under service: ∅=∪ AQ  

• All possible requests must be satisfiable: { } CRrrc ≤∈)(max  

• Active capacity cannot exceed resource capacity: CA ≤  

• Work conservation: ())(: startIqcQqCA ⇒≤∈∃∧<  

Prioritization and preemptability are properties of resource scheduling, and establish idle-time 

capacity as a distinct service class, described in the model above. Regular performance does not 

decrease in the presence of idle-time load. However, prioritization and preemptability alone are 

not sufficient for speculative use: Visible idle-time state may influence and thus interfere with 

regular execution.  

One example is a state inconsistency caused by an idle-time request that was preempted during an 

update operation. This could occur both for kernel state (e.g. corrupt device chain) and user state 

(e.g. interrupted write to a configuration file). Both may obviously affect regular use, as well as 

other ongoing speculations. Another, less obvious example is where the simple presence of idle-

time state (even consistent state) can interfere with other processing (e.g. idle-time lock on a 

shared file). The isolation principle prevents this scenario. It hides all speculative state from regu-

lar processing, as well as shielding the state of one speculation from that of another. Only after an 

explicit commit operation does speculative state become visible. Isolation is a property of OS 

processing, and requires a more high-level model, defined in Section 2.2.3 below. 

One shortcoming of this model of resource operation is the assumption that resources are state-

less, i.e. that the capacities ℑ→Rc :  of each request are fixed. This is not the case for all re-

sources. One example of stateful resources is disk drives. Here, earlier requests can influence the 

cost of subsequent ones, by moving the disk arm towards (lower cost) or away from (higher cost) 

the location of the subsequent access. During the remainder of this thesis research, the model 

should be extended to describe stateful resources. 
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All resources in an OS with speculative use of resources must support preemptability and prioriti-

zation. Without idle-time use, a system has a single bottleneck resource at any time, and the 

scheduler of that resource controls overall system behavior. With idle-time use, the scenario 

changes: Its goal is it to fill available capacity with useful work, and keep all resources utilized at 

all times; thus, all loaded resources become bottlenecks. If some schedulers do not support idle-

time use, foreground performance may decrease. Section 4.2 presents experimental results that il-

lustrate how prioritized CPU scheduling is insufficient to provide prioritized network service. 

The remainder of this section discusses the operation of resource schedulers and kernel process-

ing, and required mechanisms to extend them for idle-time use. 

2.2.1 Prioritization 

This section illustrates prioritization for temporally and spatially-shared resources. Prioritization 

is a function of work queue management. 

Prioritization: Never process idle-time requests while regular requests are waiting for ser-

vice. 

 A resource cpCAQR ,,,,,  supports prioritization if and only if its 

()start operation picks a new request Qa∈ to start servicing such that 

{ }Qqqpap ∈= )(max)( . 

R1
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Figure 1: Scheduler for a temporally-shared resource without prioritization. 
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First, Figure 1 illustrates the operation of a FIFO scheduler for temporally-shared resources that 

does not support prioritization. Before time t1, the resource is idle. At t1, request regular R1 arrives 

and the resource immediately starts processing it, ending the idle period. At t2, idle-time request I 

and regular request R2 arrive and are enqueued. At t3, processing of R1 finishes. 

Here, the scheduler picks idle-time request I for processing, instead of regular request R2. Thus, 

idle-time processing for I delays regular processing (R2 must wait until t4 before receiving ser-

vice), violating the prioritization principle. A scheduler with support for prioritization would have 

picked R2 over I at t3 instead (see Figure 2).  
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Figure 2: Scheduler for a temporally-shared resource with prioritization. 
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Figure 3: Scheduler for a spatially-shared resource without prioritization. 
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Prioritization is also critical when spatially-shared resources should support non-interfering idle-

time use. Figure 3 displays such a scenario for a spatially-shared resource with 100 allocation 

units with a scheduler that does not support prioritization. Here, the resource is completely idle at 

t1. At t2, an idle-time request I for 50 units and a regular request R for 75 units arrive at the re-

source. By allocating the capacity for the idle-time request first, the scheduler causes the subse-

quent allocation of R at t3 to fail due to insufficient capacity. This interferes with regular process-

ing: the process issuing R may abort or be delayed. 

A spatial scheduler with support for prioritization (see Figure 4) will schedule R before I. Even 

though I cannot be serviced at t3 (again due to insufficient resources), this has no impact on regu-
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Figure 4: Scheduler for a spatially-shared resource with prioritization. 
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Figure 5: Scheduler for a temporally-shared resource without preemptability. 
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lar use. 

2.2.2 Preemptability 

Similar to prioritization, preemptability is the second key principle required for non-interfering 

idle-time use. This section will describe how schedulers for temporally and spatially-shared re-

source must operate to support preemptability. 

Preemptability: Immediately preempt active idle-time use to service incoming regular re-

quests. Never preempt regular requests because of idle-time use. 

 A resource cpCAQR ,,,,,  supports preemptability if and only if it supports 

prioritization, and during its )(qenqueue  operation, if )(qcI <  it picks a 

subset AF ⊆  of strictly lower-priority active requests of sufficient capacity 

such that )()(: qpfpFf <∈∀  and )( pcIF ≥+ , and then preempts these 

lower priority requests )(: ffinishFf ∈∀  such that q  is immediately 

started following the )(qenqueue  operation. 

First, Figure 5 shows an example for a scheduler for a temporally-shared resource. At t1, it starts 

processing idle-time request I. While I is being processed, regular request R arrives at t2. How-

ever, the resource continues to process I, delaying execution of R until t3, when I finishes. 
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Figure 6: Scheduler for a temporally-shared resource with preemptability. 
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The scheduler in this scenario violates the preemptability principle, because it does not immedi-

ately yield the resource to the newly arriving regular request R at t2. Figure 6 shows how a sched-

uler with support for preemptability operates in the same scenario: At t2, it preempts (or aborts) 

the active request I, and immediately starts processing R instead. Thus, it causes no delay for 

regular processing – only for idle-time use, which is the correct behavior. 

The next example illustrates how a scheduler for a spatially-shared resource supports preempta-

bility, again for a resource with 100 allocation units. At time t1 in Figure 7, the resource is com-

pletely idle. At t2, idle-time request I for 50 units arrives, and the capacity is allocated. When a 

regular request R for 75 units arrives at t3, it is declined due to lack of available capacity. This 

violates preemptability. 

Instead of declining request R, a scheduler with support for preemptability must reclaim (part of) 

the capacity allocated to idle-time use whenever it has insufficient capacity for an incoming regu-

lar request. In Figure 8, the scheduler transparently reclaims 25 of the units allocated to idle-time 

use, so it can satisfy the regular request R. 

Preemptability is a function of processing. Note that for most resources, preempting a request 

and/or switching to another one is not instantaneous. This preemption overhead is the largest 

challenge faced when supporting idle-time use. Section 3.2.2 below discusses this issue in more 

detail. 
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Figure 7: Scheduler for a spatially-shared resource without preemptability. 
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Figure 8: Scheduler for a spatially-shared resource with preemptability. 
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2.2.3 Isolation 

The isolation principle states that all side effects of speculative execution must remain hidden, 

until the system has verified whether the speculation was successful. If so, an atomic operation 

makes the speculative state visible, otherwise it is discarded. 

Isolation is the key principle that allows transparent speculative resource use. While prioritization 

and preemptability are sufficient to establish an idle-time resource class, they alone do not enable 

speculative use of that idle capacity. Without isolation, speculative state can interfere with regular 

processing. One example of such interference could happen when speculative execution leaves a 

system data structure in an inconsistent state, because regular use preempted it during modifica-

tion of the structure. 

The state of an operating system state forms a set S  that incorporates all variables and structures 

visible to processes. Processes modify this state through a sequence of state operations 

( )nooO ,,1 K= , where each operation Oo∈ is a function SSo →: that transforms the state. 

The order of the operations depends on process scheduling, and is not relevant. 0S  is the initial 

state before processing begins, 1S is the state after the first operation was processed, and nS  is the 

final state after all n  operations. The intermediate state after k operations is defined as 

)( 1−= kkk SoS . The intermediary states for a given sequence of operations O  and a starting state 

0S  form a sequence ( )nSSS ,,0 K= . For a pair of operations ( ) OOoo yx ×∈, , yx oo <  if 

yx < . 

Given a sequence of operations O  and a starting state 0S , speculative idle-time use in this model 

is a new sequence of speculative operations ( )miiI ,,1 K= . They operate on an extended OS state 

SS ⊃′ , such that SSix ′→′: , and require an extended starting state 00 SS ⊃′ . 

A combined sequence of operations is any sequence IOC ∩= , which retains the relative order 

of the operations of O  and I , such that for all pairs of operations ( ) OOoo yx ×∈, , there exists a 

pair of operations ( ) CCcc sr ×∈,  such that ( ) ( ) ( )syrxsyrx cocococo <⇒<∧=∧= , and 

similarly for I . 
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Isolation in the context of the above model is defined as follows: 

Isolation: The side effects of a speculative request must remain hidden until they are 

committed; or must be discarded. 

 Given a sequence of operations O , a starting state 0S , a sequence of specula-

tive operations I  and an extended starting state starting state 0S′ , an OS sup-

ports isolation, if and only if the side effects of all speculative operations are 

limited to the extended state, such that 1: −=∈∀ xxx SSIi . In other words, all 

speculative operations Iix ∈ may only modify 11 \ −−′ xx SS . 

This model supports pre-executing a regular operation, in which case a speculative operation 

Ii∈  is a duplicate of a regular one ( oiOo =∈∃ : ) and oi < in the combined sequence 

IOC ∩= . In this case, o  is speculatively executed earlier in the sequence (as i ), but the ef-
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Figure 9: From shared OS state (left diagram) to virtualized OS state for speculative tasks (right diagram). 
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fects of the execution are kept in the extended state. During execution of o , they are moved from 

the extended into the regular part of the state space. 

Isolation virtualizes the OS state: Instead of sharing the OS state between all regular and specula-

tive tasks, each speculative task executes with its own shadow copy of the state. Regular proc-

esses still access and share the master copy of the state, as before. Figure 9 shows the current 

sharing situation on the left side, and the virtualized OS state on the right. Virtualized OS state is 

similar to the concept of virtual memory, where each process executes in a separate address 

space. 

When a speculative task modifies OS state, a private shadow copy of the OS state is created 

(copy-on-write); these shadow copies are invisible to regular processing. The OS updates the 

shadow copies together with the master copy on regular use. Update conflicts with some shadow 
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Figure 10: Non-speculative modification to the master OS state (left diagram), and commit operation of speculative 
state (right diagram). 
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copies cause speculative tasks that depend on them to abort (or enter recovery, if supported). For 

successful speculations, speculative state moves from the shadow copies into the master copy 

through an atomic operation. Remaining shadow copies are also updated during this commit op-

eration. 

Figure 10 gives an example of operations on the virtual OS state. The diagram on the left shows 

how an OS state change (1) by regular process P1 results in immediate updates to the virtual 

states VS1 and VS2 belonging to speculative tasks S1 and S2, in steps (2) and (3). 

The right diagram of Figure 10 shows how a speculative modification of VS1 by S1 in step (1) is 

atomically committed back to the master OS state (speculation successful) in step (2) and thus 

becomes visible to regular processes P1 and P2. Furthermore, the commit operation triggers an 

immediate update (3) to speculative state VS2, as if a regular process had modified the master OS 

state. 

The completed network stack extensions for idle-time use do not establish isolation yet – mecha-

nisms to guarantee isolation will be investigated as part of the proposed thesis research (see 

Chapter 6). 

2.3 Application of the Model to OS Extensions 

One of the main tasks of an OS is resource management. To support a wide variety of applica-

tions, a general-purpose OS employs simple and predictable resource schedulers, trying to pro-

vide fair service to all users. Section 2.1 above presented three key principles for schedulers with 

support for non-interfering idle-time: prioritization, preemptability, and isolation. This section fo-

cuses on OS extensions to support these principles, as well as additional mechanisms required for 

effective speculative idle-time use. 

2.3.1 Prioritization 

Most current OS schedulers do not support prioritized access. One exception is typically the CPU 

scheduler, since the CPU has traditionally been the bottleneck resource of a system. Optimizing 

CPU allocation was thus an important factor to maximize overall system utilization for a particu-

lar workload. 
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UNIX systems use a multilevel feedback queue, a variant of a round-robin (RR) scheduler. It fa-

vors bursty processes, which do not fully utilize their allocated CPU quantum by raising their pri-

ority over time, and punishes compute-bound processes by lowering theirs. Most I/O-bound proc-

esses are bursty – they block during device operations – and thus achieve high CPU priorities. 

Commonly, the CPU scheduler offers the user processes some degree of control over their priori-

ties. Non-privileged processes may lower their priority from the default, while increasing the pri-

ority is restricted to privileged processes. However, monopolizing the CPU through this mecha-

nism is impossible; it merely adjusts the share of processing time and does not establish total pri-

ority. 

Simple first-in-first-out (FIFO) schedulers organize access to most other resources, such as disk 

and network devices. While FIFOs by themselves do not assure fairness, they can do so in com-

bination with a fairness-enforcing CPU scheduler (because a process cannot issue any resource 

requests without a CPU to run on). These other resource schedulers typically do not allow proc-

esses to influence their scheduling decisions. 

Both FIFO and RR schedulers do not satisfy the prioritization principle; all requests receive equal 

service. Even a multilevel feedback queue only allows adjustment of shares, and does not prevent 

starvation. To support non-interfering idle-time use, resource schedulers must instead replace 

such scheduling disciplines with priority queue with two service classes, for regular and idle-time 

requests. 

The CPU scheduler on many POSIX-compliant systems [POSIX 1993] already offers this capabil-

ity. The POSIX CPU scheduler has three distinct priority classes for processes (real-time, regular 

and idle-time), each managed by its own multilevel-feedback queue. Processes in higher classes 

preempt any lower-class ones. Consequently, processes running under the POSIX idle-time 

scheduling class will not receive any CPU time while processes in higher classes are runnable. 

Starvation of lower-class processes occurs when higher-class load increases to saturation. Thus, 

the POSIX scheduler satisfies the prioritization principle. Experiments with the POSIX scheduler 

show that it can isolate regular use from idle-time requests to within 1%. Some other experimen-

tal CPU schedulers also support an idle-time processing class [FORD 1996] explicitly. 
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Other resources, most importantly disk and network, do not often offer different levels of service. 

Chapter 4 below presents an extension to the network stack that replaces its many FIFOs with 

suitable priority queues. A similar extension to the disk scheduler is under investigation. 

2.3.2 Preemptability 

Service prioritization alone, however, is not sufficient to guarantee non-interfering use of idle ca-

pacity. Preemptability is a second key requirement. Without it, a currently executing idle-time re-

quest would delay a newly arriving regular one, because the scheduler would let it run to comple-

tion – a form of priority inversion [LAMPSON 1980]. Instead, the scheduler must immediately 

abort or suspend idle-time use whenever a new regular request arrives. Thus, the priority queues 

proposed in the previous chapter to replace FIFOs must support preemptability. 

Preemption cost is the key factor currently limiting the deployment of idle-time use. Mechanisms 

to minimize it are critical. Resources that frequently switch between different requests often have 

hardware support to minimize this overhead. One example is CPUs, which typically offer instruc-

tions to save and restore the register set. However, most other resources do not have hardware 

support for preemption. For example, interrupting a disk output request in the middle of a device 

write operation is often impossible, because disk controllers normally do not support preemption 

(though some are proposed [SPRUNT 1988]). This is an example of physical priority inversion. 

Logical priority inversion occurs whenever preempting a lower-priority operation is impossible, 

because a shared resource would remain in an inconsistent state. 

Another factor that sets CPUs apart from other resources is that they typically serve a process for 

longer than a single resource request (i.e. a single instruction). A time quantum limits the maxi-

mum amount of time a CPU will service each process. It also minimizes the preemption over-

head, by reducing the frequency of preemptions relative to instructions. 

The idea of a time quantum may also apply to other resources with a high preemption cost. Disk 

drives are one example. A disk I/O request is typically uninterruptible, so the preemption cost of 

disk I/O is high (within the same order of magnitude as the service time). If the disk scheduler al-

locates itself to a service class for a certain time, preemption overhead decreases. For example, 

with a time quantum of 1 second for regular use, the disk scheduler would only switch to idle-
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time use once every second, instead of possibly after each completed request (i.e. each few milli-

seconds). The drawback is of course that idle-time requests incur an additional delay. 

Schedulers for spatially-shared resources must thus allow transparent use of idle allocation units. 

Resource capacity allocated for idle-time use must be reclaimable whenever it is required to ful-

fill a regular resource request. One example is allocation of disk space to processes. A simple 

first-come-first-serve scheduler prohibits the non-interfering use of idle resource units, because 

when it allocates available resource units for idle-time use, they become unavailable for regular 

use. A subsequent (large) request for allocation units from a regular process may thus fail, be-

cause idle-time use was not preempted. Section 2.2.2 above presented an example. 

This has interesting consequences for users of idle-time spatial capacity, as previously allocated 

capacities can disappear upon reallocation to satisfy a regular request. One example of such a 

case is reclaiming disk blocks used for idle-time storage on a full disk when a regular process 

starts writing. This does not occur under the regular service model, where a process can rely on 

allocated resources to be available until it explicitly returns them. Consequently, applications us-

ing idle spatially-shared resource capacity must adapt to such situations, or at least gracefully 

abort. This is similar to mechanisms for establishing preemptability (see Section 2.3.2 above), 

where speculative state can disappear due to regular use.  

2.3.3 Isolation 

Isolation is the principle of hiding side effects of idle-time use from regular resource users. One 

such side effect is a decrease in performance, which the prioritization and preemptability princi-

ples already concentrate on. Isolation focuses on all other user-perceivable aspects of idle-time 

support. 

Generally, the execution environment observed by regular processes in the presence of idle-time 

use must be identical to a scenario in which idle-time use is absent from the system. For example, 

using the regular file system to store idle-time data (even if ample disk space is available) is prob-

lematic, since the files would then be visible to regular processes, and could interfere with regular 

processing. 
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Ideally, the system would use idle resources to provide an isolated virtual execution environment, 

in which speculative tasks execute. This is similar to jail sandboxes [KAMP 2000] supported by 

some Unix variants that restrict the set of system calls that super-user processes can execute, to 

improve system security. 

Isolation requires a different set of capabilities from the sandbox environment; namely, a virtual-

ization of OS state. Each speculation would execute in a separate sandbox, completely separating 

their side effects from one another, and from the regular OS state. Only side effects of correct 

speculations become visible in the regular system. 

Complete isolation requires the elimination of all shared state between sandboxes, a difficult 

goal, similar to the elimination of all covert channels between two parties (each piece of shared 

state presents a potential information leak). However, the current idle-time network subsystem 

does not yet provide isolation, but is already effective in shielding regular use from idle-time traf-

fic (to within 1-2% of throughput, see Section 4.5). 

Thus, while complete isolation is theoretically required to eliminate all possibilities for interfer-

ence, it may be sufficient to virtualize a limited subset of OS state to establish isolation in most 

practical scenarios. A detailed investigation of mechanism to support isolation is part of the pro-

posed thesis research. 

2.4 Integrated Scheduling 

Another challenge with speculative processing is optimization of idle-time use. Starting specula-

tive processing of a task that requires multiple resources is problematic when some of them do 

not currently have idle capacities. 

For example, assume idle-time process A requires some idle CPU and disk capacity, and idle-time 

task B requires idle CPU capacity and idle network bandwidth. Assume the disk is fully loaded 

with regular requests. Speculatively starting A in this scenario is not beneficial, since its comple-

tion is unlikely due to unavailable disk capacity. However, B may finish successfully, since its re-

quired resources are not fully loaded. In this scenario, picking B instead of A for speculative exe-

cution has a higher chance of filling idle capacity with useful work. 
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Thus, speculative idle-time use could benefit from integrated scheduling, where initiation of can-

didate idle-time tasks depends on the available idle capacity at each point in time. While such a 

mechanism is not required for correct speculative use, in can increase its effectiveness, by de-

creasing partial processing due to unavailable idle-time capacity. 

Integrated scheduling requires candidate speculative tasks to disclose their planned resource use. 

While this is unacceptable for regular processing, speculative idle-time tasks must already include 

mechanisms to gracefully handle disappearing or corrupt speculative state, which regular process 

need not. Thus, resource usage hints are not the only difference between regular and idle-time 

processing. Furthermore, they only enable optimized speculative processing – they are not a re-

quired component. 

The proposed research for the remainder of this thesis includes a proof-of-concept design for such 

a mechanism for integrated idle-time scheduling. 
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3 Discussion 
This chapter discusses implications of speculative idle-time use. First, it investigates which appli-

cations could benefit from the availability of idle-time use. Then, it examines several potential is-

sues with the proposed model. 

3.1 Applications and Benefits 

Speculative use of idle resource capacity achieves performance improvements through latency 

hiding. For temporally-shared resources (e.g. network bandwidth), the OS speculatively schedules 

probable future resource requests during idle-times. Thus, speculative requests execute before a 

process issues them, and the OS caches the results. For correct predictions, this approach avoids 

much of the latency associated with processing the request in a regular fashion – to the process, it 

appears to execute faster than it would on an unmodified system. 

Idle, temporally-shared capacity permits the kernel to prefetch remote data. If the peer also sup-

ports idle-time use, pre-sending data for speculative storage is possible. This hides the execution 

delay of the operation for correct predictions. 

Unused capacity of spatially-shared storage resources can also hide latencies. In this case, how-

ever, the performance improvement is a result of speculatively storing information that is costly 

to obtain. Any data item whose access involves a delay is a candidate for speculative storage. 

Caches are the main application of idle spatially-shared capacity. A system’s storage facilities 

form a hierarchy according to their access delays. Capacity at higher (faster) levels is typically 

costly and smaller, while capacity of lower (slower) levels is large. Caching data from lower lev-

els of the hierarchy at higher levels improves performance, by reducing access delays. Swapping 

is the inverse of caching: It pushes data from higher into lower levels, to simulate larger virtual 

capacity at the higher level. 

One major issue in caching is cache size. Caches reduce the available storage capacity for regular 

use. Excessively large caches can force the system to swap part of the working set of a process to 

lower storage hierarchies, and thus decrease overall performance. On the other hand, an ex-

tremely small cache size limits the hit rate, and thus the obtainable benefit. Ideally, a cache should 
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always use any idle capacity available at a certain level in the storage hierarchy, and grow or 

shrink according to the capacity use.  

Using idle capacities for caching (instead of regular capacities, as is current practice) solves this 

issue. Aggressive caches can make maximal use of idle available capacities. The system will 

automatically shrink the cache and reclaim capacity for regular users. Optionally, the cache could 

participate in the reclaiming, by releasing infrequently used capacities to the system. 

3.1.1 Network Service 

One important group of applications focuses on improving user-perceived network service. 

Speculation can reduce both connection-open latencies and transmission times. The key idea here 

is to trade idle current bandwidth for a possible future latency reduction [TOUCH 1992]. Ideally, in 

a network with support for idle-time use, lower-priority packet processing will only occur when 

resources would have been idle in the absence of such traffic. 

One well-known application of this idea is web prefetching [PADMANABHAN 1996]. It would 

greatly benefit from the availability of idle resources use: First, transmitting prefetched data using 

idle network resources completely shields regular network users from its presence. Consequently, 

the prefetcher no longer needs to limit its aggressiveness to prevent monopolizing the network 

bandwidth. Second, larger caches become possible by using idle storage space for the prefetched 

data. 

Even without using idle storage space for caching prefetched information, current idle bandwidth 

can reduce future network latency, by prefetching the means [COHEN 2000]. This scheme does not 

prefetch any data, but instead pre-negotiates the means to transfer future data, such as pre-

opening TCP connections, or pre-resolving DNS names. Speculative execution of these opera-

tions creates very little state compared to caching the data, so idle-time access to storage capacity 

may not be necessary. 

Another technique described in [COHEN 2000] is pre-warming a TCP connection, by pre-sending 

a small amount of throwaway data over a pre-opened connection. This may pre-establish addi-

tional state in the end system and router caches, and thus further improve performance. Using idle 

network capacity for this purpose improves on the original proposal, by permitting a host to pre-
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send probe packets without interfering with regular traffic. Thus, larger amount data can be pre-

sent, allowing TCP to better estimate the RTT and congestion window for the connection. This 

may result in a better network throughput for later, non-speculative transmissions over the pre-

warmed connection. 

Pre-execution of two additional network operations during idle time (to "prefetch the means") 

could be effective. One is to speculatively initiate path MTU discoveries [MOGUL 1990] to likely 

future hosts. A PMTU discovery can add one or more round-trip-times (RTTs) to the connection-

establishment delay. Hosts supporting PMTU discovery implicitly do so whenever a connection is 

opened (speculative or regular). Another operation is speculatively initiating IPsec key negotia-

tions (IKE) [HARKINS 1998] with likely future peers, which also could also save several RTTs 

[HARKINS 1998]. With current proposals for opportunistic encryption [RICHARDSON 2001], IPsec 

negotiations may become much more frequent. Speculatively executing an IKE exchange during 

idle-time can reduce the user-perceived connection-open delays for successful predictions. 

All previous applications required idle bandwidth to operate. However, even without idle band-

width, a server system can use idle local resources to increase its network performance. Most 

servers (e.g., NFS, FTP and web) incur packetization overhead for each requested object by read-

ing it from the disk (or disk buffer) and splitting it up into a packet chain before transmission. For 

static objects, caching the packets in idle storage1 can reduce this overhead for repeated accesses 

[LEVER 2000]. As packetization overhead increases – for example, with IPsec processing – the 

potential for improvement becomes even greater. 

Note that idle-time use of the network requires router support. However, the new service model is 

a simple extension of the current Internet service model, where routers (and hosts) treat packets 

equally according to a best-effort discipline [CLARK 1988]. Idle-time use does not change this 

fundamental model: The network may still reorder, drop, or duplicate packets. Idle-time network-

ing is strictly a per-hop function of giving higher processing preference to certain packets. Chap-

ter 4 discusses idle-time networking in more detail. 

                                                      

1 Jon Postel. Private Communication. 1998. 
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3.1.2 Disk Service 

All the applications for speculative use of idle resources described above mainly use idle network 

bandwidth, and to a lesser degree memory and CPU. Speculatively using idle disk capacity (both 

I/O bandwidth and disk space) has also the potential to improve system performance. 

Most file systems already use read-ahead techniques to improve input performance [PATTERSON 

1995]. A straightforward improvement would be to execute read-ahead prefetches (with are 

speculative by nature) with idle disk resources, and move the disk buffer caching them into un-

used physical memory. Prefetches would then no longer interfere with regular read operations, 

and large idle-memory disk buffer sizes would not limit memory availability for regular uses. 

Another technique that would benefit from the availability of idle-time disk service is disk block 

replication [AKYUREK 1995]. This approach spreads replicas of frequently used disk blocks out 

over the entire disk. In effect, it moves the data closer to the disk arm, reducing arm movement 

and thus access times. One drawback of this scheme is that replicas decrease available disk space, 

and replica management uses disk bandwidth. Using idle disk space and bandwidth would miti-

gate these shortcomings. 

The inverse of the previous scheme is to speculatively move the disk arm near spots of likely fu-

ture accesses during idle time [KING 1990][MUMOLO 1999]. Unlike the disk block replicators, 

this approach does not transfer or cache any data, and the memory and disk subsystems need not 

support use of idle capacity. The drawback is that replication can have better prediction rates, be-

cause the likelihood of the arm being near the data increases with the replication factor. 

Prefetching and caching file system meta-data is another technique to increase file system per-

formance [MOLANO 1998]. As with many caches, choosing the correct size is critical for system 

performance. Using idle memory for the cache solves this problem, as the cache will automati-

cally shrink as memory use by regular processes increases. 

Many file systems must periodically checked for inconsistencies due to loss of power, etc. As part 

of an improvement to the fast file system, McKusick proposes a file system checker that continu-

ally monitors and fixes file systems for inconsistencies [MCKUSICK 1999]. Such a process would 

be a prime candidate for execution with idle CPU and disk resources. Similarly, adaptive tech-

niques to optimize performance of log-structured file systems require periodic reorganization of 
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disk contents [MATTHEWS 1997]. Executing these tasks with idle resources could improve overall 

system performance by minimizing interference with regular use. 

3.1.3 Application-Layer Uses 

Application-layer uses for idle resources also exist. One such application is an improved nice util-

ity to schedule periodic optional maintenance tasks in a system. Examples of such tasks are 

checking for viruses, defragmenting the file system, and auditing system security.  

Non-optional system management tasks, typically run through cron [REZNICK 1993], also benefit 

from using idle-time resources. Cron runs specified tasks at certain times. Simply running cron 

using idle resources is not sufficient, because regular resource use could then prevent scheduled 

cron tasks to miss deadlines. Deadline-bounded backgrounding is an extension to cron that allows 

scheduling of tasks during time intervals. Many cron tasks are maintenance operations that do not 

need to run at fixed times, as long the system could guarantee they run within a certain time in-

terval. For example, instead of scheduling a regular disk cleanup explicitly at 2am (because re-

sources tend to be idle at that time of the day), the system would schedule an idle-time disk 

cleanup anytime between 1-2am. If the task did not run by 2am due to unavailable idle resources, 

it would then execute using resources regularly. 

Under this model, foreground processing can be isolated from the presence of periodic back-

ground tasks by pushing those into idle periods before a deadline. If insufficient idle capacity is 

available before the deadline, the system switches a cron task over to foreground execution. Thus, 

in the fallback case, operation is similar to regular cron, while still isolating regular use when suf-

ficient idle capacities are available. 

3.2 Challenges 

Several issues affect the feasibility and effectiveness of a mechanism to use idle resources specu-

latively. The most obvious is the distribution of idle times for a system’s resources for a given 

workload. If idle capacities are rare (meaning resources are mostly fully utilized), the chance for 

performance improvements is low. The same is true if idle times are of short duration (before 

regular use continues). As mentioned in Chapter 1, however, ample idle capacity is usually avail-

able. 



  - 30 - 

The remainder of this section discusses other issues affecting the ability to use idle resources 

speculatively in more detail. 

3.2.1 Inter-Resource Interference 

Most computer systems contain multiple resources, usually at least a CPU and some memory. 

While prioritization and preemptability extensions to all resource schedulers are necessary to es-

tablish non-interfering idle-time use, they alone are not sufficient. In a multi-resource system, in-

teractions between resource schedulers (even prioritized, preempted ones) can cause interferences 

between regular and idle-time use. 

Inter-resource interference occurs because processing inside most kernels is an intricate combina-

tion of queueing, timeouts, interrupts, and blocking and resuming processes. The upper half of a 

typical kernel implements the system call API, the lower half hardware-dependent drivers. The 

upper and lower halves communicate through a set of work queues. The rationale behind this 

processing scheme is optimization of resource utilization, not prioritized use. The CPU scheduler 

controls process access to the top half  – processes that are blocked cannot issue resource re-

quests. The lower half, however, executes asynchronously, driven by device interrupts and sig-

nals. Interrupt processing at the lower half has priority, and always preempts the upper half (or 

user space execution). 

For example, when a process issues a resource request via a system call, the kernel simply en-

queues it in the work queue of the appropriate resource and signals the resource scheduler to start 

processing. The resource scheduler immediately dequeues the request, hands it to the resource for 

processing, and then relinquishes control to the upper half. The upper half blocks the calling 

process until the lower half signals completion, and the CPU scheduler switches to another run-

nable process. When the resource is finished processing the request, it will raise an interrupt. The 

CPU starts executing the corresponding interrupt handler, preempting all other processing. The 

interrupt handler for a resource transfers any response data from the hardware to the input buffer, 

if the request returned any, and signals to the upper half that the request processing is complete. 

This processing scheme raises several issues: First, consider the case of a finishing idle-time re-

quest, when the CPU is currently busy executing a regular process. In that case, interrupt process-
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ing on behalf of an idle-time request preempts regular use of the CPU, and violates the preempta-

bility principle: idle-time processing for one resource interrupts regular processing on another. 

Second, most interrupt handlers do not relinquish control of the CPU at this point. Instead, they 

check whether the work queue holds additional requests, and start processing them. The rationale 

for this scheme was optimized resource utilization (waiting request are started without additional 

context switches). This can amplify the problem: the newly starting idle-time requests could again 

interrupt regular processing in the future. 

In some cases, this processing scheme can also violate the prioritization principle. In the example 

above, assume the interrupted process was about to issue its own requests to the resource. The de-

lay in relinquishing the CPU prevented it from issuing these regular requests, and resource sched-

uler fills this false idle capacity with more idle-time requests. Not only was the generation of 

regular resource requests delayed, they may also incur a preemption overhead, because the re-

source must switch from idle-time to regular use. Here, a problem with one resource scheduler 

creates ripples which cause additional interference for other resources. 

Thus, resources need to cooperate to establish non-interference. The proof-of-concept design of 

networking extensions for idle time use (see Chapter 4) controls some inter-resource interference 

by controlling transmissions at the network layer. 

3.2.2 Preemption Overhead 

The largest challenge faced to support non-interfering idle-time use of resource capacity is pre-

emption overhead. For most resources, aborting one request and switching to another involves 

some amount of work, and thus incurs a delay. For example, switching the CPU from one process 

to another requires a context switch (swap of the register set), before execution can continue. 

Even worse, some resources do not support preemption. In that case, eligible requests must wait 

until the currently executing one finishes, even if their higher priority should allow them immedi-

ate access to the resource. Direct-memory-access (DMA) devices (such as disk drives or network 

interfaces), which move data to and from memory without involving the CPU, fall into this cate-

gory, because DMA transfers are usually non-preemptable. Delay due to non-preemptable service 

is another kind of preemption overhead. 
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Figure 11 illustrates this cost for a regular request R by comparing scheduling without idle-time 

use (top diagram) and in the presence of an idle-time request I (lower diagram). In the lower dia-

gram, idle-time request I starts processing at t1. At t2, regular request R arrives at the resource. It 

immediately starts preempting I, but aborting request I incurs a preemption cost (depicted by X). 

Thus, R cannot start processing until t3, whereas it could start as early as t2 in the absence of I (top 

diagram). 

While zero-cost preemption is feasible on CPUs (the designers have full control over the system 

hardware), it is almost impossible to achieve for an OS, simply because most hardware does not 

support it. Each time a resource switches from idle-time to regular use, a preemption cost incurs. 

Without idle-time use, the resource would have been unused, ready to immediately serve the new 

request. Thus, regular performance decreases. 

Without zero-cost preemption overhead, non-interfering idle-time use is impossible. Thus, the key 

issue becomes minimizing preemption costs. The hope is that a larger performance increase due 

to the ability to speculatively use idle resources compensates for a small performance decrease 

due to preemption overheads, in the majority of cases. The pathological case is a workload with 

unlimited speculative load, where a regular request immediately follows each speculative request 
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Figure 11: Preemption cost due to idle-time use (bottom diagram), compared against the basic case (top diagram). 
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as it starts executing, and all speculations fail. Thus, each request incurs the preemption overhead, 

and speculation never results in a performance increase. 

While regular performance will truly suffer in the pathological case, performance for more realis-

tic workloads may still be acceptable. Most resource use tends to be bursty; a number of back-to-

back regular requests will interrupt idle-time use. Thus, the whole request chain only incurs a sin-

gle extra preemption cost. Additionally, preemption cost varies greatly for different resources. A 

CPU context switch typically takes a few nanoseconds, while a disk request may take several mil-

liseconds. It may be possible to disable speculative use for resources for which the aggregate pre-

emption cost (i.e. the impact on regular performance) becomes too great, but continue to allow it 

for other resources. 

Additionally, the resource can eliminate the preemption overhead in special cases where it can 

predict the next occurrence of a regular request. In such a case, it can stop idle-time processing 

ahead of time, to push the preemption overhead into the idle period. To an arriving regular re-

quest, the resource seems idle, and no preemption cost delays it. For certain periodic workloads, 

or resources that require prior reservation, such a scheme is possible. 

3.2.3 Cache Pollution vs. Pre-Load Effect 

Another issue with speculative use of idle capacities may be cache pollution: Many hardware and 

software caches exist in a typical computer system to speed up operation. They replicate fre-

quently/recently used data in faster storage space, to reduce retrieval latency on future use. Be-

cause cache sizes are limited, speculative operations may create cache state that removes entries 

created by regular requests. This may increase the delay of a future regular resource request. 

Thus, regular resource use can be slower due to the presence of speculation in the system – which 

violates the isolation principle. To prevent this effect, it may be necessary to disable caching dur-

ing speculative processing [DOUGAN 1999] when regular caches grow large enough to prevent 

speculative storage. This will slow down idle-time use, but because it is not critical by definition, 

this performance decrease may be acceptable. 

However, in other scenarios, leaving caching enabled during idle-time use may increase future 

regular requests. Some studies indicate that speculative use can pre-load caches with useful data 
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for later regular uses [KWAK 1999][PIERCE 1994]. In that case, the regular processing benefits 

from cached speculative state. 

Thus, it can be beneficial to violate the isolation principle, and to allow pre-loading of caches. A 

mechanism to determine whether a speculation is likely to result in cache pollution or a pre-load 

could increase system performance. 

3.2.4 Speculative Workload Generation 

Effectiveness (hit-rate) of the speculatively executed requests is another issue with speculative re-

source use. A higher rate of correct predictions utilizes idle capacity better with useful work, im-

proving system performance. Thus, generation of candidate requests for speculative execution 

with idle capacities is critical. Ideally, an OS would automatically identify probable future re-

source requests, and speculatively execute them with idle resources. That way, speculative execu-

tion is transparent to processes; application modifications to take advantage of the speculative 

execution facility are not required. 

Unlike the instruction stream processed by the CPU, the stream of resource requests served by the 

OS is not static. The system cannot simply look ahead at the next requests in the stream, as a CPU 

can. In addition, a branch in the CPU’s instruction stream results in only two possible future paths 

of execution, while the set of possible resource requests is typically much larger. Furthermore, 

conditional branch or indirect jump instructions are the only events that introduce ambiguity into 

an instruction stream, and prediction methods can specifically target those cases. In a given re-

source request stream, any request introduces ambiguity – the next request is unknown until is-

sued. 

Automatically deducing good candidate requests for speculative execution is thus a much harder 

problem than identifying likely future instructions in the instruction stream. In some sense, it is 

comparable to predicting branches in self-modifying code. Simple general strategies, such as ran-

domly picking one branch path, which on average is correct half the time for the instruction 

stream, are thus not effective. This proposal thus assumes that processes explicitly generate re-

source requests for speculative execution. The rationale behind this scheme is that processes 

should have better information for an informed decision on their likely next resource requests 

than the OS. 
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However, automatic deduction of candidate requests is effective for a limited subset of specula-

tive idle-time use (i.e. prefetching disk blocks) [CHANG 1999]. It may be possible to extend this 

scheme to other common scenarios, to improve performance for applications that do not explicitly 

support idle-time use. 

3.2.5 Miscellaneous Issues 

Priority inversion [LAMPSON 1980] happens when a higher-priority process must wait for the 

completion of a lower-priority one that holds a required resource. The higher-priority process 

could block indefinitely while a third intermediate-priority process prevents the lower-priority job 

from finishing its resource use. However, only two priority classes (regular and idle-time) exist in 

this proposal, so priority inversion cannot occur for temporally-shared resources. For spatially-

shared resource, the proposed system aborts resource use by the lower-priority process, and real-

locates the capacity, avoiding priority inversion. 

Speculative execution happens in a much more volatile environment than regular execution. The 

OS may delay speculative requests indefinitely, and it may abort them at any time. Furthermore, 

speculatively stored data may disappear when a regular user reclaims the space. This means that 

users of idle-time resource capacities (processes in the process-driven approach, the kernel itself 

in the kernel-driven approach) must gracefully handle a wider variety of error conditions than 

regular users. 

Finally, increased power consumption and mechanical wear-and-tear may be issues encountered 

with using idle-time speculatively. Because idle-time use will ideally constantly utilize all re-

sources, the power requirements of a system, as well as mechanical wear-and-tear on moving 

parts (e.g. disk drives) may be increased. This is especially important for mobile devices, which 

operate under stricter parameters than their stationary counterparts do. 
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4 Idle-Time Networking 
A network service for idle-time use must follow the prioritization, preemptability, and isolation 

principles defined above. Thus, it should treat regular and idle-time packets differently; transmit-

ting packets queued at a router in order of decreasing priority, and dropping lower-priority pack-

ets from a full queue when higher-priority packets arrive. This chapter focuses on extending the 

end system for such a network model, and assumes network support is present. 

After defining the ITN model in the next section, experimental results presented in Section 4.2 

show that current OS mechanisms are not effective in establishing such different service levels 

for network traffic. The event-driven, asynchronous nature of network stack processing interferes 

with attempts to use CPU-scheduler-based mechanisms as offered by current systems to control 

network send behavior. 

Observations gained during an analysis of network stack operation form the basis of a design to 

support ITN, comprising of a simple set of extensions to the current BSD network stack. These 

modifications concentrate on the sender’s network layer; transport protocols and socket API re-

main unchanged. Section 4.4 describes these extensions in more detail. 

The final section of this chapter evaluates a proof-of-concept implementation of these mecha-

nisms in the BSD network stack. Experimental results suggest that the proposed extensions are 

effective in establishing ITN service: Higher-priority senders can achieve 97-99% of the through-

put in the basic case, effectively isolating them from the presence of concurrent lower-priority 

traffic. 

4.1 Idle-Time Network Model 

The idle-time networking (ITN) model used throughout this chapter is a simple extension of the 

current Internet service model, where routers (and hosts) treat packets equally according to a best-

effort discipline [CLARK 1988]. Note that ITN does not change this fundamental principle: The 

network may still reorder, drop, or duplicate packets. ITN is strictly a per-hop function of giving 

higher processing preference to certain packets. In the ITN model, packets belong to either of two 

classes: foreground (FG) or idle-time background (BG) traffic. Ideally, BG packet processing will 
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only occur when resources would have been idle in its absence. Under real conditions (non-

interruptible packet transmissions, non-zero-cost queue operations), complete isolation of FG 

traffic is difficult to achieve. 

Router support for ITN is straightforward: A router will always forward all FG packets in its 

queue before any BG packets, and it will drop BG packets from a full queue to make room for ar-

riving FG ones. In other words, ITN replaces a router’s FIFO queue with a two-layer priority 

queue. FG packets continue to experience best-effort service, while BG packets see sub-best-

effort (i.e. least-effort) service. This is not a new idea: The original IP specification [POSTEL 

1981] contains support for a precedence field in the datagram header to indicate dropping and 

forwarding priorities. 

More recently, some of the proposed extensions to support differentiated services in the Internet 

[BLAKE 1998] are similar to the idea of ITN: Expedited forwarding (EF) [JACOBSON 1999] rede-

fines a value in the IP type-of-service field to mark some packets with a higher forwarding prior-

ity. It also suggests configuring a rate limit for expedited packets, in order to prevent starvation of 

lower-priority traffic. While EF focuses on providing virtual leased lines with a fraction of the ca-

pacity of the physical link, in the absence of a configured rate limit for expedited traffic it be-

comes one possible implementation of ITN: Expedited packets belong to the FG class, and regu-

lar packets belong to the BG class. 

ITN can also be seen as a combination of two other proposals from the differentiated services 

community: One is marking packets as in or out at routers [CLARK 1998], indicating whether they 

are in compliance with their assigned traffic class. During congestion, packets marked as out are 

give drop preference (similar to ATM’s cell-loss-priority bit [ATM 1999] or frame relay’s discard-

eligible bit [THIBODEAU 1998]). The other proposal is a scheme where routers forward packets in 

strict order of priority [GUPTA 1997]. Together, these proposals can implement ITN by giving 

drop preference and lower forwarding priority to BG packets. 

In a previous paper, we have investigated the idea of ITN service at the application layer, by dis-

tinguishing between FG and BG web transactions [EGGERT 1999]. The LSAM project [TOUCH 

1998] built on this idea and used speculative background multicasting of web transactions to pre-

load self-organizing, distributed caches with popular content. 
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The network stack of an ITN end system must implement the same outbound and inbound proc-

essing mechanisms as ITN routers. However, while routers only need to concern themselves with 

prioritizing packets during forwarding, ITN support for end systems is more complex. Routers 

operate at the network layer, while packet processing on end systems covers the whole depth of 

the protocol stack. Thus, end systems need to satisfy additional requirements to support end-to-

end ITN. Processes need CPU time and possibly other resources to send and receive packets. 

Thus, simply replacing the FIFO of a network interface with a priority queue – which enables 

ITN on routers – is not sufficient: Other resources participating in packet processing may be the 

bottleneck, and dominate system behavior. 

4.2 Idle-Time Networking with Current OS Mechanisms 

A fully loaded computer system has usually a single bottleneck resource at a time, depending on 

its workload. Traditionally, that resource has been the CPU, but on many network servers, the 

network interface may be the bottleneck resource. 

Having a well-known bottleneck allows optimizations for that particular resource to control sys-

tem behavior. One example is the UNIX multilevel feedback queue for CPU scheduling, which 

originated on time-sharing systems where CPU time was scarce and needed to be carefully con-

trolled. Other examples are recent proposals for providing multiple levels of network service 

[BLAKE 1998][CLARK 1998]. Both cases strive to improve control over the bottleneck resource, 

to optimize system behavior. 

With speculative use of idle resources, the picture changes. No longer is one resource the decid-

ing factor for overall system behavior. Ideally, processing of speculative requests fills all existing 

idle capacities. Schedulers interact in a fully loaded system. All resource schedulers in the OS 

must differentiate between regular and idle-time uses. Otherwise, unmodified schedulers will 

counteract the scheduling decisions of extended ones. 

One example of such a scheduler interaction happens in network scheduling. A CPU scheduler 

with support for idle-time use (POSIX) cannot establish idle-time network service with a regular 

unmodified network stack, as experiments in the remainder of this section show. 
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Two simple CPU-based backgrounding mechanisms available on current systems include running 

the idle-time sender at nice or POSIX idle-time priorities. Experimental results show that both 

these mechanisms are ineffective in establishing idle-time network service. 

4.2.1 Experimental Setup 

In the experiments below, two copies of the same benchmark process run in parallel on a single 

host. The process is network-bound; it simply tries to send as much pre-generated random data to 

a second machine as possible. At the end of the experiment, the process reports the amount of 

data successfully sent. One of the two benchmark processes is the regular foreground (FG) 

sender, the other one the idle-time background (BG) sender.  

As a metric for the effectiveness of support for idle-time use, we compare the throughput of the 

FG sender in the presence of a BG sender against the basic case (no BG sender present). Better 

mechanisms will yield higher FG throughputs. With an optimal schedule, the FG sender should 

reach 100% throughput, and not observe any change in transmission latency. 

Each benchmark process uses three TCP or UDP connections to send its traffic, because a single 

TCP connection cannot easily overload an isolated network link due to TCP’s congestion control 

algorithm. When sending with TCP, the benchmark blocks until one or more connections become 

writeable, sends a block of data over and starts over. When using UDP, it sends one message over 

each descriptor until the send call fails with an indication that the outbound device queue is full. It 

then sleeps for 10ms, and starts over. This emulates the sending behavior of the ping utility in 

“flood” mode, and generates enough traffic to saturate the 100Mbps link used in these experi-

ments. 

Another variable is the intensity of the FG sender, which controls how large a fraction of its CPU 

time quantum a benchmark process spends in the previously described sending loops. For a frac-

tion of 0.1, for example, the process will only try to send traffic for 10% of its allocated time 

quantum. On BSD systems, the default quantum is 100ms, meaning the benchmark will generate 

send bursts of 10ms before sleeping for 90ms. The BG sender always sends at full intensity to 

simulate the worst-case situation for FG senders. 
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For each combination of transport protocol (TCP and UDP) and send intensity (full: intensity = 1 

and light: intensity = 0.1), the experiment is run for 1 minute. Figure 12 and Figure 13 show mean 

normalized FG throughputs (against the throughput of a solitary sender) with 95% confidence in-

tervals over a series of 10 iterations. 

The figures below only show FG throughputs, as the performance of BG senders is not critical 

(by definition). An optimal backgrounding mechanism would allow FG throughput to reach 

100%. Fair OS schedulers that cannot differentiate between FG and BG use would result in a FG 

throughput of 50% (the other 50% goes to BG traffic). Finally, under a completely ineffective 

backgrounding mechanism, BG traffic could starve FG packets, resulting in 0% FG throughput. 

The sending host (running the two load-generators) and receiving host are two identical FreeBSD 

4.2-RELEASE machines with 300Mhz Pentium II processors. They are located on an isolated, 

switched, full-duplex 100Mbps Ethernet. This setup is network-bound; one machine can satiate 

the link with a CPU load of 55%. 

4.2.2 Full Foreground Load 

In the first experiment, the FG sender sends TCP traffic at full intensity to the receiver. The left 

diagram in Figure 12 shows the measured and normalized FG throughput rates together with 95% 

confidence intervals (narrow white bars overlaying the wider gray bars). In this scenario, the link 

should not have any idle capacity, and no BG transmissions should occur. Achieving a full 100% 

throughput in this scenario means a FG was successful in monopolizing the link. 

With a BG TCP sender (left bars in the left graph of Figure 12), neither the POSIX nor the nice 

backgrounding mechanism can establish idle-time network service. FG throughput reaches only 

50%, indicating that some other scheduler is fairly splitting up network capacity between FG and 

BG, not the CPU scheduler. An optimal backgrounding mechanism would allow FG throughput to 

reach 100% here. 

For a UDP BG sender (right bars in left graph of Figure 12), this experiment demonstrates the 

worst-case scenario: a BG sender without rate-control can virtually shut down FG service for all 

three cases. FG throughputs are around 5% across the board. An effective backgrounding mecha-

nism must adapt to this scenario; both CPU-based schedulers fail to do so. 
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The right graph in Figure 12 shows the same experiment, but with a FG UDP sender. Here, the 

FG UDP senders achieve 100% throughput when running concurrently with a TCP BG sender 

(left bars in the right graph of Figure 12). However, this is not due to effective backgrounding, 

since the basic case also achieves 100%. The aggressiveness of an unlimited UDP sender man-

ages to starve concurrent TCP traffic: this case is the inverse of the worst-case scenario discussed 

above. 

If both the FG and BG sender use UDP (right bars in the right graph in Figure 12), the POSIX 

scheduler noticeably outperforms nice (90% throughput versus 50%). This scenario is the only 

one where one of the two CPU-based mechanisms is effective in achieving some service dis-

crimination. The reason is that kernel processing for UDP send operations is synchronous (does 

not happen during interrupt handling), and CPU schedulers have some indirect control over net-

work scheduling. However, FG performance is around 95% (with some variation) – idle-time use 

decreases FG service by about 5% here. 

4.2.3 Light Foreground Load 

In the second set of experiments, the FG sender is only active for 10% of its time quantum (= 

10ms) and thus generates bursty traffic. In this scenario, the network link has idle capacity avail-

able, and BG traffic should be transmitted during its idle times. When a FG sender achieves 100% 

throughput in this scenario, it was successful in sending the same amount of as with no BG traffic 

present. 
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Figure 12: Normalized mean throughput of a FG sender under unlimited load in the basic case (No) and with two 
backgrounding mechanisms (Nice and POSIX), using TCP (left graph) and UDP (right graph) with 95% 
confidence intervals.  
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When the FG sender uses TCP to transmit its bursts (left graph of Figure 13), the POSIX back-

grounder offers small FG performance improvements (5-10%) over the basic case for both TCP 

and UDP BG senders, while the nice mechanism is ineffective. However, FG throughputs only 

reach 30% with BG UDP and 70% with BG TCP senders – the presence of BG traffic decreases 

FG performance by 30-70%. Clearly, the POSIX scheduler is not an effective backgrounding 

mechanism in this scenario. 

With a FG UDP sender running concurrently with BG TCP traffic (left bars in the right graph of 

Figure 13), none of the backgrounding mechanisms is more effective than the basic case. FG 

throughputs still reach about 90%, but this again is due to aggressiveness of the UDP sender im-

plementation, not due to backgrounding mechanisms. 

When both the FG and the BG senders use UDP, BG traffic completely starves FG transmissions 

in the basic case and with the nice scheduler (right bars in the right graph of Figure 13). The 

POSIX scheduler manages to noticeably increase FG throughputs (to 90%), as it did in the UDP 

vs. UDP case under full load, described in the previous section. Again, this is due to synchronous 

UDP send operations that can be indirectly controlled through CPU priorities. 

These results indicate that schedulers without support for idle-time can hinder the effectiveness of 

overall idle-time use, even if some of the other schedulers do support it. Thus, all resource sched-

ulers must be extended for global support of idle resources. A previous study [NIEH 1993] has 
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Figure 13: Normalized mean throughput of a bursty FG sender in the basic case (No) and with two backgrounding 
mechanisms (Nice and POSIX), using TCP (left graph) and UDP (right graph) with 95% confidence inter-
vals. 
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presented similar results for a scenario where raising the CPU priority of a multimedia player did 

not produce the intended effect of a smoother stream playback. 

4.3 Conventional Network Stack Processing 

The experiments in Section 4.2 above have shown that current OS mechanisms (nice and POSIX 

scheduling) are not sufficient to establish ITN. This section will analyze the reasons of this failure 

by tracing the path of outgoing and incoming data through the BSD network stack, and pinpoint 

issues that inhibit ITN. Figure 15 and Figure 16 give a (simplified) view of the flow of execution 

inside the network stack during outbound and inbound processing, while Figure 14 shows the 

data flow through its various buffers. This analysis forms the basis of the OS modifications dis-

cussed in the next section. 

On BSD systems, user-level processing cannot interrupt kernel processing; processing of kernel 

events has total priority. Inside the kernel, different events have different interrupt priority levels 

(IPLs). Thus, processing of one kernel event (which may have interrupted user-level processing) 
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Figure 14: Queueing at different layers in the network stack for TCP (top) and UDP (bottom) processing. 
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can again be interrupted by a higher-priority event. User-level processing will only proceed after 

the kernel has processed both events (and no others occurred). Events at lower levels of the kernel 

(e.g. device drivers) have usually higher IPLs than events at higher levels of the kernel. 

4.3.1 Outbound Network Processing 

All user-level socket output flows through the sosend() function in the kernel down into the 

kernel (see Figure 15). Depending on the socket protocol and domain, it then calls the appropriate 

transport-layer output function through a dispatch table. For the Internet protocols, those are 

udp_output() and tcp_output().  

TCP sockets must maintain a copy of the user data so TCP’s recovery algorithm can retransmit 

the contents of lost packets. Every socket contains a send buffer (so_snd) for that purpose. If the 

send buffer is full, sosend() will block the sending process until the buffer drains. When the 

send buffer has enough space available, sosend() appends a copy of the user data to it, and then 

calls the transport-layer output function tcp_output(). Inside tcp_output(), the protocol 

checks if it may send a segment for the respective connection, according to its congestion control 

algorithm and timeout rules. If so, tcp_output() calls the network-layer output function 

ip_output(); if not, the system call is complete and process execution continues after the write 

system call. 

When a process writes on a UDP socket descriptor, sosend() does not buffer any data. UDP as a 

simple, unreliable datagram protocol does not offer protection from packet losses. Instead, 

sosend() immediately calls the transport-layer function udp_output(), which in turn simply 

calls the network-layer output function, ip_output().  
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Network layer processing for both UDP and TCP is identical. At first, ip_output() performs a 

route lookup, and then tries to enqueue the data in the device queue of the outgoing interface for 

that route. If the device queue is full, ip_output() drops the packet and the write system call is 

complete. If ip_output() was successful in enqueueing the packet, it calls the output function 

of the outgoing network interface (*if_output). This function, in turn, checks if the hardware is 

ready to transmit data, and if so, dequeues a packet from the device queue and starts transmission 

(*if_start). If not, it will simply return. After transmission starts, the driver will repeatedly de-

queue and transmit packets until the device queue is empty (or the hardware’s send buffer is full). 

It is important to note that the driver code runs at one of the highest interrupt priority levels (most 

interrupts are blocked), and so usually cannot be interrupted until the device queue is drained 

completely. 

4.3.2 Inbound Network Processing 

Inbound network stack processing starts with the physical reception of a packet by the network 

device (see Figure 16). The device will signal the availability of data to the kernel by issuing a 

device interrupt, which is handled by the device driver’s interrupt routine. It copies the data from 

the device memory into main memory. The input routine of the driver then enqueues the data into 

the correct protocol receive queue. All IP data demultiplexes into the incoming IP queue 

(ipintrq) and a software interrupt signals data arrival to the upper half of the kernel. If 

ipintrq is full, the driver drops the data. At this point, processing loops back to the driver’s in-

terrupt handler. While more packets are ready to be transferred from the device memory, the 

driver will continue to demultiplex and enqueue them for reception by higher-level protocols. 

Again, since the driver runs at a high IPL, it will not exit this loop until the device receive buffer 

is empty. 
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When a software interrupt signaling IP packet reception occurs, the ipintr() handler loops over 

all packets in the IP incoming queue and calls ip_input() for each one. That function discards 

corrupted packets, dispatches packet forwarding (if needed) and manages fragment reassembly. 

For a packet destined for the local host, it calls the transport-layer input routine, based on the 

packet’s protocol field. If dequeueing a UDP packet, ip_input() dispatches the packet to 

udp_input(), which appends the data to the receive buffer of the corresponding socket, and un-

blocks processes blocked to read data (sorwakeup). When ip_input() dequeues a TCP packet 

from ipintrq, it passes it to tcp_input(). As part of TCP protocol processing, tcp_input() 

may trigger sending new TCP packets (data and/or ACK) by calling tcp_output(), and wake 

up processes waiting to enqueue more data into the send buffer (sowwakeup). Data flows out of 

tcp_input() along the same path it does for UDP: the routine copies it into the receiving socket 

buffer, and waiting processes are unblocked (sorwakeup). 

Whenever a process reads from a socket, soreceive() checks if enough data is present in the 

socket receive buffer to satisfy the read request. If so, it copies it to the process buffer and returns. 

If not, it blocks execution until the transport layer signals the arrival of more data through 

sorwakeup. 

4.3.3 Discussion 

For a TCP sender, the kernel buffers data in the socket send buffer, which the transport layer 

drains according to TCP’s congestion control and timeout rules. The write call succeeds after the 

data enters the socket buffer, and the process continues execution. Either timeouts (in-kernel 

timer firing) or ACK receptions (device interrupt) trigger TCP packet sends. 

Both of these events happen independently from CPU scheduling. The handlers for both events 

run at higher IPL than user-level processes, and will thus interrupt process execution. This means 

that a process may not even be running when the kernel sends packets on its behalf. 

An ITN mechanism based on a modified CPU scheduler (like nice and POSIX) cannot hope to 

regulate network transmissions in this feedback system. It only controls which candidate process 

can access the socket queues to enqueue or dequeue data, not the timing of the transmission of 

that data. 
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For a UDP sender, data will usually go directly into the outbound device queue. It may seem that 

if the CPU scheduler enforced strict priorities, UDP data sent by a lower-priority process could 

never interfere with that of a higher-priority one, because the priority CPU scheduler would never 

allow the lower-priority sender to execute. 

The experimental results in Section 4.2 demonstrate that while the POSIX scheduler can prioritize 

FG traffic to some degree (10% performance decrease), it is only able to do so when both FG and 

BG traffic is UDP. Whenever FG TCP traffic competes with BG traffic, it is not effective in pri-

oritizing service. 

The reason lies in the way typical UDP senders are implemented: In essence, UDP senders limit 

their send rate by blocking for a period of time when the send system call indicates a full device 

queue. (If this never happens, the outgoing link speed is higher than the data rate of the sender.) If 

the device queue fills up before the time quantum of a process runs out, it will sleep, causing the 

CPU to context-switch to another process. Even under the POSIX scheduler, if a higher-priority 

process voluntarily sleeps, lower-priority ones may run. 

As noted above, the lower half of the kernel runs at IPL asynchronously from scheduled events in 

its upper half. This means that when the new process starts its time quantum, the driver has usu-

ally drained some packets from the device send queue and more data can be enqueued. So a BG 

sender scheduled when a FG sender starts sleeping (due to a full device queue) can usually send 

at least some packets before the queue fills up again, and it in turn sleeps. 

Another issue with current OS processing is its focus on data reception: Network interrupt han-

dlers suspend all other processing. Most systems follow an eager receiver model, and give high-

est priority to capture and storage of packets, second highest priority to protocol processing, and 

lowest priority to user-space process execution. The rationale is that receive buffer space is lim-

ited, and data must be moved off the device into main memory to prevent data loss due to buffer 

overruns.  

Without hardware support, arriving idle-time data can interfere with any regular processing, be-

cause the system must first complete the reception before it can determine if it is regular or idle-

time data, and drop or process it accordingly. In the worst case, a flood of idle-time data can drive 

a system into receive livelock [DRUSCHEL 1996][MOGUL 1997], where the system is loaded with 
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handling packet reception such that no other processing can occur. Again, this problem is worse 

for drivers that start scheduling additional requests (if present in the work queue), instead of re-

linquishing control. 

Hardware support could allow the network interface to filter out the unwanted requests, and 

eliminate interrupt processing. However, hardware support and prioritized interrupts are major 

changes to current systems. Other techniques may offer some of their obtainable benefits with 

fewer modifications to the UNIX architecture. Lazy receiver processing (LRP) [DRUSCHEL 1996], 

for example, is a modification to the UNIX network stack. It charges resource use for network 

processing to the appropriate process, discards excess data early, and schedules (most) processing 

of inbound traffic at the process priority of the receiver. The basic idea is to minimize interrupt-

level processing, instead of executing all link-, network-, and transport-layer processing on each 

packet reception. A host with support for LRP simply demultiplexes the packet stream (into per-

socket work queues) at the driver level during interrupt processing. All higher-level receive proc-

essing is scheduled lazily, when the process issues the corresponding system call. 

LRP (or a similar scheme) could benefit idle-time networking, by reducing the impact that BG 

packet receptions have on concurrent FG processing. 

4.4 OS Extensions for Idle-Time Networking 

The key issue with the two CPU-scheduler-based candidate mechanisms to implement ITN is the 

event-driven nature of kernel network processing. Nearly all network routines – with the notable 

exception of UDP sends – happen asynchronously with user mode execution: device interrupts 

trigger packet transmissions and receptions. Packet receptions trigger incoming transport protocol 

processing, which in turn may unblock processes waiting for data reception on a socket. For TCP, 

packet receptions (and to a lesser degree, kernel timeouts) trigger packet sends. In a sense, the 

network stack is an event-based system, where event priorities are equivalents to the IPL of the 

corresponding handlers. As demonstrated by the experimental results in Section 4.2, the previ-

ously examined CPU-scheduler backgrounding mechanisms have only very limited impact in 

such a system. A second issue is the use of FIFOs for all kernel queues. The processing order of a 

FIFO queue is identical to the enqueue order, which may cause a queue's consumers to process 
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earlier arriving BG data before FG (e.g. a FIFO device queue may send BG data before FG data, 

because it was enqueued earlier). This must not occur in a system supporting ITN. 

4.4.1 Design Goals 

The network stack is a complicated system, and many applications rely on its API (socket inter-

face) and service semantics. Therefore, it is important to avoid fundamental changes to the net-

work stack. Additionally, much effort went into designing and fine-tuning the Internet’s transport 

protocols. OS extensions for ITN must not modify these transport protocols, to avoid incompati-

bilities with current standards. It is also impractical to change all network drivers to support ITN, 

so hardware-dependent driver code must not change for ITN extensions. Note that part of the 

driver code is common to all devices of the same family; these routines could be safe to modify. 

In addition, for end-to-end ITN, routers in the network must distinguish between FG and BG 

packets, as described above. The focus of this chapter lies thus on host extensions; it assumes 

network support for ITN is available and the network handles packets according to their service 

marks. 

In summary, a design for OS extensions for ITN must be a simple extension of the current socket 

layer, must not modify the transport layer, and must not require changes to the hardware-

dependent parts of device drivers – consequently, they must mainly extend the network layer. 

4.4.2 Design 

One issue identified earlier in this section was the use of FIFOs for all queues in the network 

stack. To support ITN, two-level priority queues must replace most FIFOs in the network stack. 

Part of the KAME IPv6/IPsec package [JINMEI 1998] for BSD is the ALTQ framework [CHO 

1998] of alternate queueing disciplines. ALTQ replaces the outgoing standard FIFO queues of de-

vice drivers with configurable queueing disciplines, including priority queues. We have extended 

ALTQ to the inbound protocol queues (mostly ipintrq) and to drop lower-priority packets for 

higher-priority ones when the queue is full. ALTQ filters put marked packets into a lower-priority 

traffic class, for both outgoing device and incoming protocol queues. 

The service level of the network stack must not decrease for ITN-unaware applications – the ker-

nel must not send their packets as BG by default. Only ITN-aware applications may use the new 
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service class, by explicitly indicating this to the kernel. The socket layer offers socket options to 

set user-configurable options on a per-descriptor basis. Thus, the only socket-layer change needed 

is a new socket option (SO_BACKGROUND) that indicates that the network stack should treat all 

traffic from or to a socket as low-priority BG traffic. Note that this scheme is the inverse of other 

proposals for packet marking that use marks to increase the service level (e.g., expedited forward-

ing). Without proper policing mechanisms, these schemes become problematic – nothing keeps 

processes from marking all their packets as high-priority, and thus receiving better than best-

effort service. The proposed marking scheme for ITN avoids these complications by only allow-

ing applications to lower their service level. 

Because of the event-based nature of the lower half of the kernel, drivers will transmit packets as 

soon as they enter their device queue (a transmitter activation follows each enqueue operation). 

Because the driver code executes at a higher IPL than the network layer, it typically sends the 

packet before another one can be enqueued. Consequently, the network layer must verify if BG 

packets may be sent at a particular time before it enqueues them into the device queue. The key 

idea is that the host should never send BG packets to any destinations when a FG sender is using 

the same outgoing interface. Instead, the network layer should drop these BG packets, signaling 

an out-of-buffers (ENOBUFS) error condition. UDP senders must already be prepared to handle 

this error condition (it occurs when the device queue fills up), and TCP will take the packet drop 

as an indication of congestion and lower the rate of the BG sender. 

There are several possible methods to determine if an interface is in use by a FG process before 

enqueueing a BG packet into a device queue. The simplest one is to check if a FG protocol con-

trol block (PCB) exists that uses the same outgoing interface. While this simple approach is effec-

tive, it is also too restrictive: A single FG TCP connection prohibits any BG traffic from being 

sent – even when it is idle. A more effective identifier of active senders would not only check for 

the presence of a PCB for an outgoing interface, but also use additional means to determine if the 

PCB is an active user of the interface. For example, it could check if the corresponding socket 

had any queued data in its send buffer, which would indicate an active sender. The prototype im-

plementation evaluated in the next section uses this technique. 

Active UDP senders are more difficult to identify. Unlike TCP, UDP does not buffer any data at 

the socket layer (all UDP socket send buffers are always empty), so the check described for TCP 
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in the previous paragraph is not effective. Furthermore, UDP writes are non-blocking; they either 

succeed in enqueueing data into the device queue or fail and return to the user process with an er-

ror code. No kernel state exists that allows determining precisely if a UDP sender is active or not 

at any given time. The current design for ITN thus uses the following heuristic to check for active 

UDP senders: For each UDP PCB, the network layer will check if the corresponding process is 

sleeping or not. A sleeping process indicates (paradoxically) an active UDP sender. This heuristic 

depends on the common structure of implementing UDP clients, which send until they fill the de-

vice queue or run out of data, then sleep to enforce a send rate limit. (See the next section.) 

The design for ITN in this section is clearly a proof-of-concept, and practical reasons argued for 

minimal modifications to the current network stack. A completely redesigned network stack with 

support for ITN from the ground up would be an equally possible solution, but the extent of such 

an effort is outside the scope of this project. 

Several performance issues exist with the current design. One is that the decision to enforce ITN 

at the network level causes BG packets to go through socket and transport layer processing, only 

to be dropped when FG senders use the same outgoing interface. Enforcing ITN at a higher layer 

would not incur this performance hit. For more compute-intensive future transport protocols (e.g. 

encrypted or tunneled flows), this may prove problematic. A second performance issue is the per-

BG-packet overhead of looking up the PCB for a packet and determining if FG senders (PCBs) 

exist for the same interface. The current implementation adds list of users (pointers to PCBs) to 

each interface to limit the impact of this search. Schemes that are more complex may further 

mitigate this overhead, but are outside the scope of the initial implementation. 

Detecting active UDP senders (to protect FG UDP traffic from BG interference) at the network 

layer is difficult, due to lack of information. The kernel can gain information about TCP connec-

tions and their corresponding processes from internal state. For UDP senders, no such state exists 

at the kernel level; UDP senders manage it inside the application. One future possibility could be 

to extend UDP to utilize to queue data at socket send buffer, and to drain it as the interface queue 

empties. This would allow the TCP technique to check for active senders to extend to UDP send-

ers. 
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4.5 Experimental Evaluation 

To evaluate the effectiveness of the ITN mechanism designed in the previous section, we repeat 

earlier experiments (see Section 4.2) with the new ITN backgrounding technique. The experimen-

tal setup is unchanged, except that the BG senders are now using the new network ITN 

backgrounding method. 

4.5.1 Full Foreground Load 

The left graph in Figure 17 shows how a fully loaded TCP FG sender behaves under BG load 

generated by TCP or UDP senders that use the ITN backgrounder. In both cases, FG throughput 

reaches about 99% of the maximum. An optimal backgrounding mechanism would achieve the 

full 100%; the proposed ITN mechanism gets very close. 

The right graph of Figure 17 displays the result for a UDP FG sender. Again, FG throughput un-

der full load reaches 97-99% for both UDP and TCP BG traffic. With TCP BG traffic, this is no 

improvement over the basic case, because the aggressive UDP FG traffic can already monopolize 

the link. In fact, throughput is 1-2% lower, maybe due to processing overhead of the ITN mecha-

nism. With a UDP BG sender, however, the ITN mechanism is again very effective, increasing 

FG throughput to 99%. 

Under all these full-load scenarios, the ITN backgrounder is effective in isolating the FG traffic 

from the presence of any BG traffic in the system. 
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Figure 17: Normalized mean throughput of a FG sender under unlimited load in the basic case (No) and with the ITN 
backgrounding mechanism, using TCP (left graph) and UDP (right graph) with 95% confidence intervals.  
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4.5.2 Light Foreground Load 

The next set of experiments looks at the performance of a bursty FG sender using the ITN back-

grounder. For a TCP FG sender (left graph in Figure 18), the new mechanism improves FG 

throughput between 35-80% to 99% total for both TCP and UDP BG traffic. Thus, it effectively 

isolates FG traffic from the presence of BG senders. 

For a UDP FG sender (right graph in Figure 18), the ITN backgrounding method also increases 

throughput to 99% for both TCP and UDB BG traffic. With a TCP BG sender, this is a minor im-

provement of 5% over the basic case. Again, this is because the UDP sender is already aggressive 

enough to reach high throughput. With a BG UDP sender, the performance increase is around 

90% – bursty FG UDP traffic was almost denied service in the basic case, now its performance is 

close to optimal. 

4.5.3 Discussion 

The experimental results presented in this section show that the proposed ITN extensions are ef-

fective in isolating FG traffic from the presence of BG traffic. In all the investigated scenarios, 

FG performance reaches 97-99% of the basic case (where no BG traffic is present), effectively 

isolating FG packets from the presence of BG traffic. While the benchmark framework used for 

these experiments is flexible, the current load-generating processes are very simple. This was a 

deliberate choice, to factor out secondary system interactions from the results. Future experiments 
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Figure 18: Normalized mean throughput of a bursty FG sender in the basic case (No) and with the ITN backgrounding 
mechanism, using TCP (left graph) and UDP (right graph) with 95% confidence intervals.  
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should investigate the behavior of the ITN backgrounder under real workloads, such as support-

ing a web server with FG and BG service classes. 

Another shortcoming of these experiments is that they only measured FG throughput, not latency. 

For full isolation, not only must FG senders reach the same throughput they would in the absence 

of BG traffic, they also should not see any increase in transmission latency. Future experiments 

should investigate this further. 

As mentioned above, the benchmark processes used during the experiments throughout this paper 

are deliberately simple. The next set of experiments should investigate the behavior of the current 

ITN design under a realistic workload, such as supporting a web server with FG and BG service 

classes. Another interesting set of experiments would compare the packet-scale send behavior of 

an ITN-enabled host with BG traffic against a basic one without (under the same workload) to in-

vestigate how close to the ideal behavior the current mechanisms are. 
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5 Related Work 
Related work falls into two broad categories: First, systems that prioritize resource use, such as 

hard and soft real-time systems. The second category comprises of various speculative tech-

niques, such as prefetching and caching, or remote execution systems. The remainder of this sec-

tion contrasts these systems with this proposal. 

5.1 Real-Time Systems 

Correctness of the computation in a real-time system not only depends on its logical correctness, 

but also on the time at which results are produced. Missing the timing constraints (deadlines) of 

the computation results in a critical failure. 

The system defined above is commonly referred to as a hard real-time system, where missed 

deadlines are equivalent to a total system failure. Soft real-time systems relax the latter restriction: 

Missed deadlines are undesirable, but not catastrophic. In both cases, construction of a schedule 

such that all tasks meet their deadlines is critically important. The spectrum of existing real-time 

systems – from hard real-time to soft “multimedia” real-time – is vast. 

5.1.1 Examples 

The Spring Kernel [STANKOVIC 1991] supports real-time execution on multiprocessor machines, 

guaranteeing absolute predictability based on worst-case execution times. One processor of the 

system is dedicated to execution of the system kernel; the rest is available to execute user proc-

esses. One unique feature of Spring is its planning-based approach to resource scheduling, which 

eliminates blocking from the system, but depends on detailed description of the resource use of 

all application programs. Spring offers predictable memory accesses by preloading and locking 

physical pages, and by saving and restoring the translation look-aside buffer during context 

switches (a related technique is also effective for traditional systems [BALA 1994]). 

Nemesis [LESLIE 1996] is a vertically structured OS, where a microkernel implements only mini-

mal task switching functionality. Shared libraries provide the bulk of in-kernel services offered by 

a traditional OS at the application level. Thus, most processing on behalf of user processes is sub-

ject to scheduling by the microkernel, and is correctly charged to the processes on whose behalf it 
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occurs. Unlike Spring, Nemesis does not support hard real-time processes, and processes are not 

required to specify their resource requirements in advance. Instead, it focuses on providing a con-

sistent quality-of-service environment for multimedia (soft real-time) applications through a QoS 

manager. It notifies applications of changes to the service allocation, and expects them to adapt. 

Among other things, it signals to applications whether an increase in their resource share is due to 

a (temporary) increase in idle capacity, or to an actual change in the service allocation. Thus, 

Nemesis supports some notion of processing with idle capacity. 

Eclipse/BSD [BRUNO 1998][BRUNO 1999] is similar to Nemesis in that it focuses on providing 

soft real-time service targeted at multimedia applications. Unlike the former, it requires explicit 

resource reservations through hierarchical CPU, disk, and network schedulers. Real-Time Mach 

[TOKUDA 1990] is a microkernel-based OS similar to Eclipse/BSD, but with support for hard real-

time processes. Again, applications explicitly notify the system of their resource requirements 

through reservations. 

AQUA [LAKSHMAN 1998] is a kernel-level framework that allows cooperating processes to dy-

namically negotiate their CPU and network requirements with the kernel. If a resource becomes 

congested, AQUA notifies affected processes to allow service adaptation. Omega [NAHRSTEDT 

1996] is an end system framework that supports soft real-time scheduling of CPU, memory, and 

network I/O to provide end-to-end quality-of-service. Omega is similar to AQUA; processes dy-

namically negotiate their resource requirements with the system. 

Scout [MOSBERGER 1996] is a communication-oriented OS based on the abstraction of data paths. 

Scout allocates threads to active paths according to a variety of schedulers, to vary the service 

model of the system. Idle-time execution in Scout would require the addition of idle-time paths 

combined with a thread scheduler supporting two service classes. 

5.1.2 Discussion 

All the real-time systems mentioned in the previous section differ in one or more of the following 

key characteristics from a traditional, general-purpose OS: predictability, resource requirement 

specifications, and admission control. 
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One key difference is predictability, which requires time bounds on all resource operations and 

scheduling overheads. Without such bounds, processing deadline guarantees are impossible. Nar-

row bounds are desirable for higher system utilization. Defining time bounds on operations is dif-

ficult and usually hardware dependent – for example, the maximum time of a disk read operation 

depends on the disk drive model. 

Predictability is not required for non-interfering idle-time use as proposed here, although it might 

lower some preemption costs. With a known service time for a request, a scheduler may let an 

idle-time request finish instead of preempting it when a regular request arrives. If the time-to fin-

ish of the idle-time request is less than the preemption cost, this might decrease interference with 

regular use. 

A second difference between regular and real-time systems is resource requirement specifications. 

Processes must disclose their future resource use to the system. In the basic case of a dedicated 

system, a programmer statically verifies that the system can satisfy all resource requirements of 

the various processes, and compiles a fixed schedule controlling resource use. Naturally, such a 

system will not support dynamic process creation, and is too limited for general-purpose use. 

More advanced real-time systems allow processes to explicitly disclose their planned resource use 

and deadlines at run-time, and can automatically generate resource schedules based on these res-

ervations. In both cases (explicit or automatic schedule generation), the workload of the system 

must be periodic. The resource requirements of dynamic workloads are difficult to predict, and 

their worst-case resource use may be unbounded. 

For this proposal, resource requirement specifications are not required for regular processes. If 

speculative tasks choose to specify their resource requirements, the system could optimize specu-

lation by not allocating any idle-time capacity to tasks that require capacity on a resource that is 

fully loaded. However, this is an optional optimization of the speculation mechanism, and not a 

required condition. 

When a new real-time process is created, the system verifies its execution feasibility dynamically, 

and rejects the process if execution would over-commit its resources. This admission control is 

the third key component of a real-time system. A general-purpose OS does not need to perform 

this operation, because is neither offers resource reservations nor fixed deadlines. Dedicated real-
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time systems do not require admission control, because their workloads are static, with externally 

proven deadline guarantees. 

With resource requirement specifications, more advanced systems can automatically generate 

schedules for periodic workloads. Such schedules require prioritized resource access. This aspect 

of real-time systems is very similar to the current proposal, which also requires resource prioriti-

zation: Many of the prioritized schedulers proposed for real-time systems can implement idle-

time use for a given resource. However, the key difference is that real-time systems give preferen-

tial treatment to some resource requests, to meet specified or implied service goals. 

The current proposal, on the other hand, is the inverse: Some resource requests receive less-than-

default service. It is simple to convert a mechanism for the former into one for the latter (raise the 

default priority, use explicit notification to lower it) for a single resource. Thus, priority schedul-

ers for real-time systems can implement idle-time use for a single temporally-shared resource. 

However, prioritization is not sufficient to establish non-interfering idle-time use; preemptability 

and isolation are also required, both of which real-time systems do not provide. It is, for example, 

acceptable for an RTOS to continue processing a lower-priority request when a higher-priority 

one arrives, as long as it misses no deadlines. It may in fact be advantageous to avoid preemption, 

to increase resource utilization. Isolation is a concept that has no equivalent in an RTOS; side ef-

fects of execution at different priorities are always globally visible. 

Furthermore, real-time systems focus on scheduling temporally-shared resources. Idle-capacity 

use of spatially-shared resources is a key requirement of this proposal that an RTOS does not ad-

dress.  

Thus, while an RTOS can offer one requirement for speculative idle-capacity use (prioritization), 

two others are unsupported (preemptability and isolation). Furthermore, real-time execution re-

quires predictability, resource requirement specification and admission control, all of which are 

unnecessary for idle-time resource use. 
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5.2 Speculative Uses of Idle Capacity 

A wide variety of systems tries to use idle capacity speculatively. This section discusses three ar-

eas in which such uses of idle-times are common: prefetching and caching, optimization and 

maintenance tasks, and idle-time processing. 

5.2.1 Prefetching and Caching 

The storage facilities of a system form a hierarchy according to their access times and transfer 

speeds. Prefetching is a technique to retrieve a data item before access (hiding the access time). 

Caching is a related technique to replicate data in unused capacity at a higher level in the storage 

hierarchy. Prefetching requires caching to store the prefetched items, while caching is effective 

without prefetching, by simply replicating recently used data in faster storage. 

Prefetching and caching are important techniques to speed up execution. The goal is to interleave 

I/O activity with computation, and to prefetch data prior to use, hiding I/O latency. Several pro-

posals focus on prefetching, using different compile-time, run-time, and speculative techniques. 

One approach uses idle CPU cycles while a process is blocked to speculatively continue execu-

tion of a shadow copy of the same process, to generate prefetching hints to speed up future I/O 

[CHANG 1999]. The shadow copy executes in a sandbox environment that prevents side effects to 

become visible to the original process. The authors claim 30-70% reductions in execution times 

for various benchmarks. 

Another approach for out-of-core computations (where large datasets must reside on secondary 

storage) uses compiler techniques to automatically insert prefetch instructions into the application 

code [MOWRY 1996]. Experiments show that the technique is successful in hiding between 50-

98% of the I/O latency, speeding up execution by a factor of 2-3. Similar techniques are also ef-

fective for memory cache prefetches [MOWRY 1998][OZAWA 1995]. 

Finally, another mechanism allows applications to disclose future disk accesses to the OS explic-

itly by passing hints [PATTERSON 1995]. The authors report a performance increase of up to 42% 

for some applications. 
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All three approaches strive to identify idle resource times to schedule their prefetches. The first 

system does so automatically, by running the hint generator when the process is blocked. How-

ever, due to the absence of prioritized resource access, the hint generator, as well as the prefetches 

can still interfere with CPU and disk use by other processes. The last two systems are even more 

limited, because they rely on application-level strategies to identify idle times. The mechanisms 

presented in this proposal could improve and simplify all these systems, by shielding regular re-

source use from the presence of the prefetches, as well as caching speculative data in idle storage 

capacity. 

5.2.1.1 Effects on System Caches 

Most operating systems contain caches at many levels in the processing hierarchy (memory 

cache, disk buffer, ARP, HTTP, etc). Speculative operations can modify cache contents, affecting 

regular performance. The disk block hint generator described above [CHANG 1999] is a system 

that explicitly tries to pre-load the disk cache with useful data, to increase performance. 

However, performance decreases due to speculative uses can also occur. One study reports a de-

crease in regular performance when memory pages are speculatively cleared. Most operating sys-

tems clear memory pages before they allocate them to processes, to prevent security holes. How-

ever, page-clearing at allocation time severely affects performance. Clearing pages in the kernel’s 

idle loop, so that pre-cleared pages are available at allocation time [DOUGAN 1999], may alleviate 

this problem. However, the authors report that memory cache pollution due to page-clearing lim-

ited the overall performance gain: Useful application-related state was flushed to cache page-

clearing state, and application performance thus decreases (even though page allocations were 

faster). The obvious fix is to disable cache replacement during the idle time operation. While this 

decreases the performance of the page-clearer, it retains application state in the cache, and thus 

improves performance. 

Other studies, however, find that leaving caches enabled during speculative execution can have a 

beneficial effect on overall performance, due to a pre-load effect. One such example is the pre-

fetchers discussed above, which pre-load the disk cache with useful information. Another study 

investigates the memory cache behavior of a processor with support for multithreading [KWAK 

1999], and finds that hit rates increase for related threads that exhibit locality-of-reference, while 

they decrease for unrelated threads. A third study monitors the execution behavior of specula-
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tively executing processes [PIERCE 1994]. The authors report that while data references increase 

with speculative execution, data misses increase only moderately; and the prefetch effect more 

than offsets the performance impact, resulting in improved performance overall. 

With extensive idle-time use of resources, as proposed in this paper, cache pollution is a major is-

sue. To guarantee isolation, extensions to suspend cache replacements may be required for many 

of the system caches. 

5.2.2 Optimization and Maintenance 

Most operating systems regularly perform optimization and maintenance operations, to detect 

system problems and improve performance. Many of these operations are lengthy and not critical, 

and several proposed techniques try to schedule them during idle times. Examples of such tasks 

include disk block replication [AKYUREK 1995], speculative disk arm movement [KING 

1990][MUMOLO 1999], prefetching and caching file system meta-data [MOLANO 1998] and file 

system consistency checking and reorganization [MCKUSICK 1999][MATTHEWS 1997]. Section 

3.1.2 above discussed these in more detail. 

Some network-related techniques to improve performance, like web prefetching [PADMANABHAN 

1996], are similar to the disk ones. Unlike using local resources, network transmissions usually 

require an expensive connection setup. Thus, caching and pre-warming of connections [COHEN 

2000], PMTU probing and IPsec key negotiations are techniques that do not apply to local re-

sources. Speculative execution of these phases can hide much of the latency associated with con-

nection setup. Section 3.1.1 above presented these in more detail. 

Again, all these techniques could execute speculatively using idle resources, instead of heuristi-

cally limiting them in the hopes of minimizing their impact on regular processing. 

5.2.3 Idle-Time Execution 

All the previous techniques used idle local resources speculatively. Several other systems try to 

use idle remote resources for productive work. One category of such systems is process migration 

systems (cycle harvesters), which push local processes to idle remote machines for faster execu-
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tion. Another category is data migration systems, which push data to remote machines that exe-

cute a common process. 

One major difference to this proposal is that these systems concentrate on detecting remote avail-

ability and then utilizing idle capacity for a single resource only; other resources are only used as 

an implicit side effect. The proposed system, on the other hand, strives to utilize idle times of all 

resources independently of one another. 

Another difference is that these systems do not prioritize between idle-time and regular process-

ing. Thus, they treat idleness as a system-wide Boolean condition, while the proposed system 

supports utilization of partially idle resources. While many systems (especially real-time systems, 

see Section 5.1 above) support high-priority resource access, few others offer the notion of idle-

time background use. One of the few that does is a hierarchical CPU scheduler, where arbitrary 

threads can act as schedulers for other threads by donating part of their allocated CPU time [FORD 

1996]. One such scheduler explicitly supports background CPU use, similar to the POSIX idle-

time scheduler [POSIX 1993]. 

5.2.3.1 Process Migration 

Cycle harvesters schedule computations on a network of workstations, hoping to exploit idle re-

mote resources to speed up local jobs. Historically, they have focused on utilizing remote CPU 

cycles (hence the name) and only utilized other remote resources indirectly. Cycle harvesting is 

especially effective for parallelizable jobs that can utilize multiple remote machines at once. 

However, even sequential jobs can benefit from remote idle-time execution, where they do not 

have to compete for resources with other active processes.  

The Sprite System [DOUGLIS 1991], Condor [LIZTKOW 1988], Batrun [TANDIARY 1996], DAWGS 

[CLARK 1992] and the V System [THEIMER 1985] are cycle harvesters that support process re-

migration, when a remote host under idle-time use becomes unavailable. Butler [NICHOLS 1987], 

a component of the Andrew system, is a transparent remote process execution facility that does 

not provide process migration, but simply terminates remote processes when a remote machine 

becomes unavailable.  
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While cycle harvesters are similar in spirit to speculative idle-time use proposed here – both ap-

proaches aim at reclaiming wasted capacity for useful work – several key differences exist. Cycle 

harvesters are often application-level or middleware solutions running on top of a conventional 

OS without prioritized processing. Most of their shortcomings, such as migration overhead and 

idle-time detection, are artifacts of that design. 

Without prioritized resource use, cycle harvesters cannot effectively utilize machines with par-

tially idle resources (bursty local workloads). Since migrated processes run at the same priority as 

regular ones on the remote machine, any migrated process can severely decrease regular perform-

ance on a remote machine. Thus, most harvesters only reclaim cycles from remote machines that 

are fully idle. The system presented in this proposal, however, supports prioritization and pre-

emptability, and can utilize partial idle capacity. 

Another consequence of the lack of prioritization is high migration costs. Whenever a remote 

machine becomes unavailable for idle-time use, all remote processes on it must be re-migrated or 

terminated. Re-migration is a costly operation and will decrease regular performance of the re-

mote machine during the migration period. Terminations are faster but still not instant, because 

the system must roll back to invalidate local state created by the terminated remote process. Addi-

tionally, partial work completed by terminated processes is lost. 

With process migration systems, the finest-grained operation corresponds to the migration of a 

remote process. In the proposed system, on the other hand, an operation is a single resource re-

quest (e.g. sending a packet, reading a disk block). Thus, the overhead of aborting idle-time use in 

the proposed system is smaller, because the granularity of operations on the idle resource is finer-

grained (e.g. wait for disk read to finish vs. re-migrating an entire process). 

High migration costs further reduce the chance for utilizing idle resources: For bursty remote 

workloads with short idle-times, a cycle harvester could enter a state of thrashing, where all idle 

periods are spent migrating process to and from the machine, and no forward progress was made. 

Because the exact distribution of remote idle times is usually unknown, most cycle harvesters 

employ coarse heuristics and/or predictors [WYCKOFF 1998][GOLDING 1995] to find likely long 

idle periods. These techniques are effective in utilizing long, periodic idle periods (e.g. night 

hours), but fail to detect shorter, transient idle times due to quantization. They can thus fail to util-

ize some existing idle capacities of their target resource. The proposed system does not require 
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such heuristics, since prioritization inherently establishes different service levels, and can utilize 

all present idle capacities (of all resources). 

5.2.3.2 Data Migration 

Unlike cycle harvesters, which push both code and data to an idle remote machine for execution, 

data migration systems only move data to idle peers for processing or storage. All remote ma-

chines participating in such a distributed system already run a copy of the same client process. 

Process migration systems offer more flexibility in remote idle-capacity processing, but data mi-

gration systems are simpler, can be platform-independent and have smaller preemption costs.  

One popular subclass of such systems are application-level clients for distributed computation 

projects, such as cryptographic code breaking or searching for large prime numbers [HAYES 1998] 

– or even extraterrestrial life [KORPELA 2001]. In these systems, all participants run the same cli-

ent, and servers only migrate replicas of the data to be processed. 

Other systems use unused remote memory as secondary storage, instead of a local disk [MINNICH 

1989][FEELEY 1995][KOUSSIH 1999][MARKATOS 1996][NARTEN 1992]. This can improve 

performance, because access times for remote memory over a local area network can be an order 

of magnitude lower than access times for local disk space. 

As with process migration systems, the idle-time mechanisms proposed in this paper can improve 

data migration systems by processing migrated data and communicating with remote peers during 

idle time. 

5.2.3.3 Speculative Execution in Hardware 

The proposed idea of using idle system resources speculatively is similar to some features found 

on modern microprocessors. A CPU with a superscalar architecture has multiple execution units; 

allowing it to execute multiple instructions per clock tick, further increasing performance. How-

ever, it cannot provide unlimited speedups, because speculation requires a continuous instruction 

stream. Conditional branch instructions and indirect jumps create problems for these systems, 

since they introduce ambiguities into the instruction stream that cannot be resolved until after the 

branch instruction has executed. Thus, execution units may remain idle until the CPU determines 

whether or not to follow a branch. 
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Instead, modern CPUs will use speculative execution to process likely future instructions. When 

the memory bus and some execution units are idle, the processor will speculatively prefetch, de-

code and execute likely future instructions.  

Speculatively execution of instructions never decreases the execution speed of non-speculative 

processing, due to prioritized, preempted CPU resources (bus bandwidth, execution units). The 

CPU gives total priority to non-speculative instructions and immediately preempts any specula-

tive processing for non-speculative execution. Hardware mechanisms eliminate preemption cost. 

Furthermore, all side effects of a completed speculative instruction remain hidden until the proc-

essor can verify the prediction. For correctly predicted instructions, side effects become visible, 

while the CPU discards them for mispredictions. CPUs have hardware mechanisms to efficiently 

manage speculative state, and discard or commit operations do not delay regular processing. 

Prioritized, preempted resource use, together with isolation of speculative side effects result in a 

worst-case performance that is identical to a CPU without speculation, even with constant mis-

predictions. For correct predictions, however, processor performance is improved. Because they 

implement the same three principles as the proposed system, CPUs with speculative execution are 

most closely related to it. 

Processors designs supporting simultaneous multi-threading (SMT) interleave execution of in-

structions of multiple threads, to increase processor utilization compared to more traditional 

schemes that only exploit instruction-level parallelism (ILP). One speculative technique for SMT 

processors uses idle thread contexts to execute the less-likely branch of a predicted fork 

[WALLACE 1998]. The authors report a 14-23% average speedup for single program performance 

on an SMT with eight thread contexts, for programs with a high branch misprediction rate. These 

results may indicate that sharing idle-time capacity among multiple speculative tasks may also in-

crease performance for the proposed system. 

The Address Resolution Buffer (ARB) [FRANKLIN 1996] and the related decentralized Speculative 

Versioning Cache (SVC) [GOPAL 1998] allow reordering memory-referencing instructions, to bet-

ter exploit instruction-level parallelism. Traditional processors enforce a total order between 

memory references, while the ARB enforces total order only among references to the same ad-

dress. The ARB also supports speculative loads/stores, dynamically unresolved loads/stores and 
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memory renaming. The latter capabilities are similar to techniques required to support idle-

capacity use of storage resources. 

5.2.3.4 Speculative Execution in Software 

Speculative execution has also been a part of some software systems, such as compilers or inter-

preters for programming languages. One example is a mechanism that speculatively interprets 

program branches in the BaLinda Lisp dialect, and assigns resources to speculative threads pro-

portional to their relative likelihood [YEE 1993]. 

A related compile-time technique speculatively executes some method calls of Java programs us-

ing idle multiprocessor capacity [CHEN 1998]. For such methods, a speculative thread continues 

execution after the method's return point, using a predicted result value. The mechanism relies in 

part on properties of the Java virtual machine to shield threads from one another. The authors re-

port significant speedups (up to a factor of 3) for data-parallel applications; only minor gains for 

control-flow-dependent programs. 

Speculative execution has also been proposed in the area of information agents [BARISH 2000] 

and decision flow optimization [HULL 2000]. These approaches focus on generating good sub-

tasks for speculative execution, but do not address the issue of executing them with idle capaci-

ties. This proposal, on the other hand, focuses on the OS extensions required for non-interfering 

idle-time use, but does not address generation of speculative subtasks. In that respect, the two 

mechanisms complement one another. 
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6 Plan 
Chapter 2 introduced a model for speculative use of idle resource capacity, and identified prioriti-

zation, preemptability and isolation as the three key principles to establish non-interfering specu-

lation. Without them, speculative idle-time use will interfere with regular use of resources. Based 

on the model, Chapter 4 presented a proof-of-concept design of idle-time extensions for the BSD 

network stack, and presented experimental evidence that the current mechanisms shield regular 

use from the presence of idle-time traffic in the system to within 1-2%.  

The current proof-of-concept implementation supports prioritization and preemptability for the 

CPU scheduler (based on POSIX priority classes) and network I/O. Extensions for non-

interfering idle-time use for other resources (notably disk I/O and storage capacity, and memory 

capacity) are not part of the implementation yet. The current mechanisms control inter-resource 

interference between the CPU and network stack, but may need extensions once idle-time support 

for other resources exists. In addition, isolation of speculative side effects does not exist yet, and 

integrated scheduling to optimize speculation is thus not yet available. 

The remainder of this thesis research will address these limitations, by extending the current idle-

time mechanisms to support idle-time use of the network file system (NFS). NFS [SANDBERG 

1985] is a distributed file system that allows hosts to seamlessly mount part of a remote file sys-

tem and present it as if it were part of the local file system. This allows transparent remote file ac-

cess; processes are unaware of the physical location of the data they access. Idle-time NFS is a 

combination of idle-time mechanisms for the local disk and file system (at the server), and idle-
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Figure 19: Phases of idle-time (IT) NFS implementation. 
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time networking mechanisms to speculatively access remote data. 

Other methods for remote data access (e.g. FTP, web) were considered as candidate applications 

to extend and verify the idle-time model presented here. Idle-time NFS is a more interesting ex-

ample compared to those others protocols: NFS as a file system supports a much wider variety of 

operations (read, write, seek, etc.) compared to FTP and web transactions, which are mostly read-

only data retrievals. Tighter integration with the kernel offers a higher chance of interference with 

regular use – compared to the application-level candidates – and thus a better test case. 

Support for idle-time NFS requires extensions to the current mechanisms that address its current 

limitations, and will thus verify the applicability of the idle-time model presented in this proposal: 

• Server-side support for idle-time NFS requires new techniques for prioritized, preempted 

disk I/O and storage. 

• Virtualization of OS state to establish isolation should be investigated, to prevent specu-

lation from interfering with regular use. 

• Inter-resource interference of the new idle-time disk service and the existing network and 

CPU extensions must be prevented, verifying the applicability of the current model. 

• Idle-time NFS requires idle CPU, network and disk capacities and is thus a scenario to 

investigate mechanisms for integrated scheduling. 

• Extensions of the idle-time model to support virtualized or stateful resources are required. 
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Figure 19 illustrates the planned research towards idle-time (IT) NFS, and indicates the current 

state of the mechanisms. 

One part of the experimental evaluation of new mechanisms for idle-time NFS is similar to those 

presented in Section 4.5. It will compare throughput and latency of different-size NFS read and 

write operations in the basic case (without idle-time use) against the performance of the same re-

quests under varying idle-time loads. Idle-time loads will both vary in intensity and in their target 

resources (e.g. disk-only, disk-and-CPU, etc.) Effective mechanisms for idle-time NFS will shield 

regular NFS traffic from the presence of idle-time use under all intensities and target resources. 

While the previously described experiments are sufficient to determine to which degree new idle-

time NFS mechanisms support prioritization and preemption, they do not measure whether isola-

tion is established. Isolation is a condition, not a performance function. Part of the research to es-

tablish isolation must focus on defining an adequate metric for it. 

Finally, Figure 20 shows the planned timeline for the completion of the proposed research. 
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7 Appendix: Extended Research Plan 
The plan for the remainder of this thesis research is to support idle-time use of the network file 

system (NFS), as well as extend the underlying resource model. Both tasks will be detailed be-

low. 

First, the current resource model does not describe speculation costs and benefits, nor stateful re-

sources (where prior operations can change the overhead of future ones) or virtual resources (that 

are users of other resources themselves). I plan to extend the model to describe these properties. 

The major part of the thesis effort will be spent on the second part: extending the network file 

system (NFS) to support idle-time use. This work builds on the existing idle-time networking 

mechanisms. A major new component are mechanisms handling idle-time disk I/O and storage 

management. 

One application for idle-time NFS are web caches, which replicate recently/frequently accessed 

web objects locally. Web caches aim at reducing both network and server load and page access 

times. Their effectiveness (aggregate hit rate) depends on two factors: cache size and per-entry hit 

rates. Increasing either of the two can increase the performance of the cache. 

If remote idle disk capacity can be used as storage for the web cache – without interfering with 

regular use on the remote system – the cache size could grow by an order of magnitude or more, 

compared to storing it on local disk. As mentioned above, this can increase the aggregate hit rate 

of the cache, especially in scenarios where per-entry hit rates are low. 

Data stored in idle-time capacity can disappear when part of the capacity is reclaimed for regular, 

non-idle-time use. Web cache entries are speculative by nature, and web caches already contain 

mechanisms (i.e. transparent re-requests) for missing data. Thus, they are well fitted for idle-time 

storage. 

Support for idle-time NFS requires these components, which will be discussed in detail in the 

paragraphs below: 

1. Extended idle-time networking (~ 1 month) 
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2. New idle-time support for disk I/O (~ 2 months) 

3. New idle-time support for disk storage (~ 3 months) 

The first step (1) are minor extensions to the existing idle-time network service, that should be 

completed within 1 month. A modified send mechanism (postponing a send attempt vs. simply 

dropping idle-time packets when the network is busy) may allow a higher idle-time throughput 

while still keeping regular traffic shielded. The current mechanisms, while effective in shielding 

regular traffic from the presence of idle-time use, too restrictively limit idle-time transmissions 

over a partially idle network. This part of the research will focus on TCP for NFS transmissions, 

UDP will not be investigated. The modified mechanisms will be evaluated in the same bench-

mark framework used during the proposal experiments. 

The second step (2) implements idle-time use of disk I/O bandwidth. The current SCAN disk 

scheduler will be extended to support prioritized use, taking unique disk properties into account 

(seek time dominates, extra accesses during one arm sweep incur only minor overhead). Again, 

the new disk scheduler will be evaluated in the existing benchmark framework, both locally and 

together with the networking mechanisms. This part is estimated to require 2 months. 

The final task addresses idle-time use of storage capacity. Tasks (1) and (2) focus on shielding 

regular processing from the presence of idle-time use (through prioritization and preemptability). 

Task (3) focuses on isolation mechanisms for disk storage capacity. Disk blocks that are unused 

by the regular file system will be used as storage capacity for a shadow file system for idle-time 

use. One major subtask is a mechanism for reclaiming blocks under idle-time use for regular stor-

age, when needed. The estimated time for completing this component is 3 months. 
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8 Appendix: Related Work – Concurrency Control 
Sections 2.2.3 and 2.3.3 in this thesis proposal presented the principle of isolation, which requires 

that the side effects of speculative requests must remain hidden until they are committed or dis-

carded by the entity that issued the speculation (depends on the workload generation method). 

The isolation principle virtualizes the operating system (OS) state. In an unmodified OS, all proc-

essing operates on the same system state, transforming it over time. In the presence of isolation, 

this can lead to incorrect processing, if the side effects (state modifications) of speculations be-

come visible to regular processing. 

One example of such a conflict is a speculative listen on a port. If a regular process tries to per-

form the same operation at a later time, the OS must deny this request, since the port number is 

already in use. 

This is what isolation prevents. Since all speculations execute on virtual OS state (copy-on-write 

variant), the OS state seen by regular processing remains unchanged, and the execution behavior 

remains unchanged from the basic case (no speculation present in the system). 

If the system deems a speculation to be unsuccessful, the virtual state associated with it can be 

discarded. However, the result of successful speculations (i.e. the side effects of the speculation) 

should be merged into the regular OS state. To prevent incorrect processing, this merge must be 

performed as an atomic operation with regard to other processing (regular and speculations). 

Furthermore, conflicts between the regular and virtual OS state can arise, when regular process-

ing modified the same pieces of state as a speculation did. This is similar to processing of concur-

rent transactions in a database system, where the same data item may be involved in multiple 

transactions. 

8.1 Concurrency Control in Database Systems 

Transactions in database systems are atomic operations on the contents (state) of a database. Al-

lowing multiple transactions to execute concurrently increases performance, but requires mecha-

nisms maintain database correctness. 
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Correctness depends on two conditions: integrity (defined through a set of constraints on the con-

tents) and serializability. The latter requires database state changes to be equivalent to some serial 

execution of the given set of transactions. 

A wide variety of mechanisms for concurrency control have been proposed [BERNSTEIN 

1981][BHARGAVA 1999][KOHLER 1981][THOMASIAN 1998]. They can be roughly divided into 

three groups: locking, timestamps and rollback. Each of these groups will be briefly outlined be-

low. 

8.1.1 Locking 

One scheme to address concurrency control is locking all data items required for a transaction. 

When a data item is already locked (by another concurrent transaction), a transaction can either 

wait, abort itself or preempt the other transaction. This is a pessimistic scheme, since the locking 

overhead is incurred even when transactions do not conflict. 

One issue with this scheme is deadlock (circular lock dependencies among multiple transactions), 

which can be remedied with various solutions, (e.g. two-phase locking, ordered locks). 

8.1.2 Timestamps 

Another mechanism for concurrency control are timestamps on operations, which specify a fixed, 

serial processing order for all operations, guaranteeing consistency. Globally synchronized clocks 

are required. When conflicts arise, they are strictly resolved in timestamp-order. 

Some timestamp schemes use implicit locking to maintain consistency, hile others are based on 

voting mechanisms, which trade overhead for central locks for communication overhead (which 

can be less in some decentralized systems). 

8.1.3 Rollback 

Rollback concurrency control schemes differ from the previously described classes in that no 

conflict prevention scheme is in effect during transaction processing. Instead, this scheme handles 

conflicts during commit time, by rolling back all state changes, and then either aborting or restart-

ing. 
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Rollback schemes are optimistic in that the basic assumption is that conflicts will be rare, and in-

frequent concurrency control during commit time is more efficient than employing an a priori 

scheme on every transaction. 

8.2 Discussion 

There are two ways in which the proposed mechanism for speculative execution could benefit 

from database concurrency-control techniques. First, OS processes can be seen as database trans-

actions, and the entire processing model could be mapped. Second, such techniques could im-

prove the critical operation that maintains the isolation principle – merging of virtual state. 

8.2.1 OS Processes as Database Applications 

At some level, process execution in an OS and transaction processing in a database system are 

similar: Both allow multiple, concurrent entities (processes and transactions) to perform opera-

tions on shared state. However, concurrency control mechanisms for database systems may not 

directly apply to OS, due to a few key differences. 

State conflicts in OS processing are relatively rare; first because processes usually spend a good 

part of their time in user-space (processing private, unshared state). Second, multiprocessors were 

rare, and systems had thus only one active physical thread of execution (even though simulating 

multiple threads of control through CPU scheduling). Thus, the OS could lock state through 

blocking interrupts, a fast operation. This is changing towards lock-based schemes as multi-

processors are becoming more common [LEHEY 2001][SCHIMMEL 1994], because interrupt block-

ing is limited to single CPUs. The locking overhead (compared to blocking interrupts) is compen-

sated for by allowing more than one CPU to execute kernel code concurrently, and locks are 

placed on carefully (and manually) identified pieces of the kernel state. 

Another issue is that concurrency-control mechanisms in databases must be general enough for a 

wide variety of dynamic application domains.  On the other hand, the uses for such mechanisms 

in an OS are well-known and static, so simplified special-case mechanisms are worth deploying 

(e.g. for the process lists, device queues, etc.) 
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Furthermore, in the model proposed here, speculations have a lower priority than regular process-

ing and are preemptable. While some concurrency control mechanism support similar prioritized 

models (e.g.  for real-time databases) [HARITSA 1992][LINDSTROM 2000][YU 1994], they are not 

immediately applicable to prioritize speculations. (See the discussion on real-time systems in Sec-

tion 5.1 of the proposal, similar arguments apply here.) 

In databases, one correctness criterion is the existence of a serialized execution of the same trans-

actions. The valid execution order of a set of OS operations in the presence of speculations is 

much more constrained: The order of regular operations on OS state must be unchanged from the 

basic case when speculations are present, and the intermediary OS states must also be identical. 

(See Section 2.2.3 for details.) Database mechanisms enforcing conventional serializability may 

not satisfy these stricter requirements. 

8.2.2 Concurrency Control for State Merging 

The atomic merge operation after a successful speculation is another place where concurrency-

control ideas from databases may apply. 

This state merge is a strictly confined operation. First, only two sets of data are involved (regular 

and speculative). It is rare that two successful speculations finish at the same time, and they can 

be committed in any order in that case. 

Second, regular state has priority over speculative state: If a piece of regular state has changed 

during the speculation, the merge cannot be completed, and the result of the speculation must be 

discarded. 

Third, even if a speculation runs to completion, it is not automatically successful - continued 

regular processing can change the usefulness of the speculation during its execution. 

This makes optimistic, rollback-based ideas unsuitable for this operation. Such mechanisms 

would merge speculative state before the speculation ends (assuming absence of conflicts and 

success on termination). Rollbacks are triggered on conflicts, which causes regular processing de-

lays whenever speculation fails. 
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Timestamp-based mechanisms are also not well suited to this scenario.  Timestamps provide a se-

rial execution order for transactions. However, timestamps do not capture the constraints of the 

state merge (regular state always overrides speculative state) well. 

Lock-based mechanisms, on the other hand, are very applicable. A single lock for the whole state 

is the simplest solution. In effect, this preempts regular use for the duration of the merge opera-

tion, and will thus decrease regular performance. However, since this overhead is only incurred 

for successful speculations - which potentially improve regular performance - the locking over-

head may be compensated by the speculation gain. 

Using multiple locks for different parts of the OS state could further minimize the locking cost. 

For example, if a speculation has only changed state in the "network" part of the OS state, it 

would only need to acquire the "network" lock - regular processing that does not involve the 

"network" state could continue during the merge. This maps well to a copy-on-write approach for 

speculative state management, where different pieces of state can be locked to allow merging 

speculative revisions. 

In the extreme case, each data item in the OS state would offer a separate lock. Clearly, this is in-

feasible due to the space overhead. An adequate mechanism will probably utilize multiple locks 

for logically separate parts of the state space. 

8.2.3 Concurrency Control for Speculative Use 

The database processing model is more general, but also more complex than the one proposed for 

an OS with speculative use. For the remainder of the thesis research, a simple copy-on-write vari-

ant is under investigation to manage virtual OS state for speculations. 

When a speculation starts, no virtual state is associated with it until it starts performing write op-

erations on OS state. Whenever is about to perform a write operation to a data item, the system 

atomically copies that data item (or a larger piece of state containing the item, such as a page), 

and then executes the write on the copied item. Read operations read from virtual state, if it exists 

for a given data item, and from regular OS state otherwise. 



  - 79 - 

This scheme achieves the goal of isolating regular processing from the side effects of speculations 

- speculative writes modify only copies. It does not provide the reverse (i.e. speculations do see 

the side effects of regular processing), but this is not required. 

It is a variant of traditional copy-on-write schemes [RASHID 1988][BRUSTOLONI 1996] because of 

the state merge operation required for successful speculations, which is unique to this scenario. At 

the end of a successful speculation, the system tries to merge the virtual state created by the 

speculation with the regular state existing at that time. Since data items can change in both virtual 

and regular state (when concurrent regular processing writes to the same data item), the system 

must detect these write conflicts, and abort (or restart) the speculation. Mechanisms to support 

this include checksums and access timestamps.  

The details of the proposed mechanisms will be investigated as part of the thesis research. 

8.3 Conclusion 

While processing in general databases and operating systems is very similar at a high level, the 

operations required to support speculative use of idle resources have unique properties that 

mechanisms proposed for database systems databases either cannot support, or only support with 

additional overheads due to their generality. However, some of their more basic concurrency-

control techniques (such as lock-based schemes) can be modified to support this scenario. A cus-

tomized concurrency-control mechanism for isolation of speculative side-effects, based on a vari-

ant of copy-on-write and locking, has been outlined and will be further investigated in the re-

mainder of this thesis.  
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