
Speculative Use of Idle Resources

Ph.D. Dissertation Proposal

Lars Eggert

larse@isi.edu

Computer Science Department

University of Southern California

Los Angeles, CA 90089-0781

USA

October 22, 2001

(Appendices added July 2, 2002)

 - i -

Abstract
Even a fully loaded computer system, where the bottleneck resource is constantly busy, often has

some idle capacities available on other resources. This proposal argues for using these idle ca-

pacities speculatively, increasing system performance for correct predictions. In such a system, all

resources will ideally be constantly loaded with either regular foreground tasks, or speculative

idle-time tasks.

The key contribution of this proposal is a model for non-interfering use of idle resource capacity,

based on three principles: resource prioritization between regular foreground and idle-time use,

preemptability of idle-time processing, and isolation of speculative side effects. Current operating

systems fail to provide all three capabilities. Without new mechanisms, processing of speculative

tasks can delay or even starve foreground processing, and result in a decreased foreground per-

formance, instead of increasing it.

Under the proposed model, speculative tasks only execute using otherwise idle resource capaci-

ties; the model also shields foreground processing from the side effects of their presence in the

system. Thus, speculation can no longer delay or interfere with foreground processing. Based on

the model, a proof-of-concept design of network extensions for idle-time service can isolate fore-

ground network packets from the presence of idle-time traffic to within 1-2% throughput.

The remainder of this thesis will focus on idle-time support for the network file system (NFS).

Idle-time NFS requires an extension of the current mechanism to disk I/O and storage capacity, as

well as new mechanisms to isolate speculative side effects based on virtualization of OS state.

 - ii -

Contents

1 Introduction 1

2 A Model for Speculative Use of Idle Resources 6

2.1 Introduction ... 6

2.2 Principles for Speculative Use... 9

2.2.1 Prioritization ... 11

2.2.2 Preemptability ... 14

2.2.3 Isolation... 16

2.3 Application of the Model to OS Extensions.. 19

2.3.1 Prioritization ... 19

2.3.2 Preemptability ... 21

2.3.3 Isolation... 22

2.4 Integrated Scheduling.. 23

3 Discussion 25

3.1 Applications and Benefits.. 25

3.1.1 Network Service.. 26

3.1.2 Disk Service .. 28

3.1.3 Application-Layer Uses .. 29

3.2 Challenges ... 29

3.2.1 Inter-Resource Interference... 30

3.2.2 Preemption Overhead.. 31

3.2.3 Cache Pollution vs. Pre-Load Effect... 33

3.2.4 Speculative Workload Generation... 34

3.2.5 Miscellaneous Issues... 35

4 Idle-Time Networking 36

4.1 Idle-Time Network Model... 36

 - iii -

4.2 Idle-Time Networking with Current OS Mechanisms... 38

4.2.1 Experimental Setup... 39

4.2.2 Full Foreground Load ... 40

4.2.3 Light Foreground Load ... 41

4.3 Conventional Network Stack Processing... 43

4.3.1 Outbound Network Processing ... 44

4.3.2 Inbound Network Processing .. 46

4.3.3 Discussion ... 48

4.4 OS Extensions for Idle-Time Networking... 50

4.4.1 Design Goals... 51

4.4.2 Design ... 51

4.5 Experimental Evaluation ... 54

4.5.1 Full Foreground Load ... 54

4.5.2 Light Foreground Load ... 55

4.5.3 Discussion ... 55

5 Related Work 57

5.1 Real-Time Systems.. 57

5.1.1 Examples... 57

5.1.2 Discussion ... 58

5.2 Speculative Uses of Idle Capacity ... 61

5.2.1 Prefetching and Caching ... 61

5.2.1.1 Effects on System Caches ... 62

5.2.2 Optimization and Maintenance ... 63

5.2.3 Idle-Time Execution.. 63

5.2.3.1 Process Migration.. 64

5.2.3.2 Data Migration .. 66

5.2.3.3 Speculative Execution in Hardware .. 66

5.2.3.4 Speculative Execution in Software ... 68

 - iv -

6 Plan 69

7 Appendix: Extended Research Plan 72

8 Appendix: Related Work – Concurrency Control 74

8.1 Concurrency Control in Database Systems ... 74

8.1.1 Locking ... 75

8.1.2 Timestamps ... 75

8.1.3 Rollback .. 75

8.2 Discussion.. 76

8.2.1 OS Processes as Database Applications.. 76

8.2.2 Concurrency Control for State Merging.. 77

8.2.3 Concurrency Control for Speculative Use .. 78

8.3 Conclusion... 79

 - v -

Figures

Figure 1: Scheduler for a temporally-shared resource without prioritization............................. 11

Figure 2: Scheduler for a temporally-shared resource with prioritization.................................. 12

Figure 3: Scheduler for a spatially-shared resource without prioritization. 12

Figure 4: Scheduler for a spatially-shared resource with prioritization...................................... 13

Figure 5: Scheduler for a temporally-shared resource without preemptability. 13

Figure 6: Scheduler for a temporally-shared resource with preemptability. 14

Figure 7: Scheduler for a spatially-shared resource without preemptability............................... 15

Figure 8: Scheduler for a spatially-shared resource with preemptability.................................... 15

Figure 9: From shared OS state (left diagram) to virtualized OS state for speculative

tasks (right diagram).. 17

Figure 10: Non-speculative modification to the master OS state (left diagram), and

commit operation of speculative state (right diagram). ... 18

Figure 11: Preemption cost due to idle-time use (bottom diagram), compared against

the basic case (top diagram). ... 32

Figure 12: Normalized mean throughput of a FG sender under unlimited load in the

basic case (No) and with two backgrounding mechanisms (Nice and

POSIX), using TCP (left graph) and UDP (right graph) with 95%

confidence intervals... 41

 - vi -

Figure 13: Normalized mean throughput of a bursty FG sender in the basic case (No)

and with two backgrounding mechanisms (Nice and POSIX), using TCP

(left graph) and UDP (right graph) with 95% confidence intervals............................. 42

Figure 14: Queueing at different layers in the network stack for TCP (top) and UDP

(bottom) processing. .. 43

Figure 15: Network stack outbound processing.. 45

Figure 16: Network stack inbound processing.. 47

Figure 17: Normalized mean throughput of a FG sender under unlimited load in the

basic case (No) and with the ITN backgrounding mechanism, using TCP

(left graph) and UDP (right graph) with 95% confidence intervals............................. 54

Figure 18: Normalized mean throughput of a bursty FG sender in the basic case (No)

and with the ITN backgrounding mechanism, using TCP (left graph) and

UDP (right graph) with 95% confidence intervals. ... 55

Figure 19: Phases of idle-time (IT) NFS implementation... 69

Figure 20: Timeline of the proposed research for idle-time (IT) NFS. ... 71

 - 1 -

1 Introduction
One of the main tasks of an operating system (OS) is resource management. Many computer sys-

tems have plenty of idle resource capacity, even under peak load. For any increasing workload, a

small fraction of the total resources becomes the fully utilized system bottleneck, while other re-

sources have idle capacity available. The workload determines the bottleneck resource: it may be

the network link for a web server, while it could be the disk for a database system. Other non-

bottleneck resources (RAM, CPU, etc.) may remain partially idle.

The focus of this proposal is a model to utilize such idle capacities for speculative tasks, without

interfering with or delaying regular non-speculative use. The second part of this proposal applies

the model to design idle-time mechanisms for network service. An experimental evaluation of a

proof-of-concept implementation of the idle-time networking mechanisms shows them to isolate

regular foreground traffic from the presence of speculative tasks to within 1-2% throughput.

Several studies investigate the resource utilization of systems. One reports an average of 50-70%

of the total memory of a cluster of machines to be available [ACHARYA 1999], and approximately

15-30 minutes between memory use peaks on a single machine. It concludes, “dips in memory

availability (…) are likely to lead to a perception of memory being short.” Other studies focus on

CPU utilization [MUTKA 1991][MUTTKA 1987][WYCKOFF 1998] and report that around 70% of

the monitored machines in a network where idle.

Idle capacities may be even larger than above studies suggest, due to their coarse metrics to de-

termine idle times (e.g. “no user logged in”, “screen saver active”, “CPU load minimal”). Short,

transient idle times may remain undetected due to quantization effects caused by these coarse idle

metrics. Furthermore, none of these studies monitored multiple, different resources. In cases

where the monitored resource of a system seems busy, other resources could have significant idle

capacities. For example, a system with a 50% loaded CPU (“not idle” according to above coarse

metrics) may still have significant idle disk capacity – in fact, it even has a considerable idle CPU

capacity of 50%.

Idle resource capacity is wasted; it cannot be saved for later use. Scheduling useful work during

idle resource periods could increase system efficiency. Ideally, all resources should be constantly

 - 2 -

busy, executing either regular or speculative requests. A good speculative request is a likely future

request issued by a regular process. Pre-execution of such a request – before it is issued explicitly

– can hide its processing latency from the issuing process, resulting in a performance increase.

Not all speculations are likely to be correct. Thus, it is important to shield other processing from

their presence until a correct prediction is confirmed, and the result of the speculation can be

made available to the system.

To avoid interference with regular use of a resource (and thus decreasing performance), specula-

tion should be limited to periods where the resource is not busy – speculative resource use should

only occur when resource capacity would have been idle in its absence. Ideally, the presence of

speculative resource use in the system will thus have no impact on regular processing, neither

preventing nor delaying it: it should be non-interfering. In the pathological case of a constantly

busy resource, a speculative request for idle time use will starve forever. A conventional OS will

strive to prevent starvation of any request, prohibiting idle-time use.

Such speculative resource use is already common in some areas: One area is microprocessors

with support for speculative branch execution. Such processors use idle execution units and

memory bandwidth to pre-fetch and speculatively execute likely future instructions, giving total

priority to non-speculative processing. Hardware mechanisms preempt speculative use without

affecting regular execution, and manage speculative state, keeping it isolated until commit time

(or discard time, for mispredictions). The key design principles of these microprocessors are pri-

oritized and preempted use of microprocessor resources, and complete isolation of the side effects

of speculative execution.

The focus of this proposal is mechanisms to enable such non-interfering uses of idle resource ca-

pacity. It argues that the same design principles enabling speculative branch execution on micro-

processors (prioritization, preemptability, and isolation) are necessary and sufficient to do the

same at the OS-level. Current systems fail to provide these capabilities, because most of their re-

source schedulers do not offer prioritized, preempted access. Instead, a general-purpose OS em-

ploys simple and predictable resource schedulers, trying to provide fair service to all users and

prevent starvation. On such systems, speculative background use of idle capacity can delay or

even prevent regular foreground use, as the speculative workload increases.

 - 3 -

A conventional OS also does not isolate all the side effects of one process from another. Without

isolation, speculative state can interfere with regular execution. Isolation virtualizes the operating

system state, to shield regular processing from the side effects of speculation.

One of the main contributions of this proposal is a model for non-interfering idle-time resource

use that encompasses both I/O and storage resources. Another challenge is inter-resource interfer-

ence, where idle-time processing on one resource delays regular use of another. Finally, integrated

resource scheduling, where speculative tasks are scheduled depending on their idle-capacity re-

quirements, is a possible optimization to spend idle capacities more effectively.

Later chapters of this proposal apply the model to network stack extensions supporting idle time

use. With these extensions, routers and end systems differentiate between regular and idle-time

transmissions: Idle-time packets are dropped or delayed in favor of regular best-effort packets,

and only receive a diminished service. Experimental results show that these idle-time extensions

can isolate foreground traffic from the presence of speculative transmissions to within 1-2% of

obtainable throughput.

One example application that benefits from such idle-time resource use is prefetching of likely fu-

ture FTP or web requests [TOUCH 1994][TOUCH 1995][PADMANABHAN 1996]. Conventional pre-

fetchers must explicitly limit their speculative transmissions, to avoid excessive interference with

regular network traffic. Idle-time networking enables aggressive prefetching without the possibil-

ity of interference with regular network traffic. Similarly, idle-capacity use of storage resources

(such as memory or disk space) allows the prefetch cache to grow without affecting foreground

storage use.

As mentioned above, the three principles establishing non-interfering idle-time use are prioritiza-

tion, preemptability, and isolation. Prioritization guarantees that a waiting regular request will

always receive service before any idle-time one. Preemptability describes the property of imme-

diately suspending or aborting ongoing idle-time use if capacity is required to service an incom-

ing regular request. Finally, isolation shields regular use from the side effects of speculative proc-

essing until they are committed (successful speculation) or discarded.

The proof-of-concept implementation for idle-time use presented in this proposal supports only

prioritized and preempted network I/O and CPU use, isolation of speculative side effects is not

 - 4 -

yet established. One application that requires additional mechanisms is idle-time use of the net-

work file system (NFS). To support this, the remainder of this thesis research will investigate idle-

time mechanisms for disk I/O and storage capacity, as well as integration of these new techniques

with the existing idle-time network stack.

Investigation of mechanisms to establish isolation between regular NFS and idle-time NFS will

be one focus area of this research. Another key issue is inter-resource interference between the

disk, network, and CPU subsystems. While the current mechanisms control interference between

the CPU and network stack, their effectiveness must be confirmed in the presence of speculative

disk use. Finally, given that idle-time NFS depends on the availability of idle capacity on multiple

resources, it is an effective testbed to experiment with integrated scheduling, to optimize what

speculative tasks available idle capacity is allocated to.

Using idle resources for productive work is not a new idea. Several remote execution systems can

detect idle (or under-utilized) remote machines, and include mechanisms to migrate part of the lo-

cal workload onto these remote hosts. Other migration systems use idle remote memory instead

of local secondary storage. A few key differences between these systems and this proposal exist:

First, migration systems focus on distributing the workload for a single resource (typically CPU

or memory) – other remote resources remain idle. The proposed system tries to utilize idle capaci-

ties on all resources. Second, migration systems typically do not issue speculative tasks; the mi-

grated requests are part of the regular system workload. Third, migration systems depend on re-

mote hosts to actively donate idle resources, while this proposal can use idle local resources in a

number of ways: Simply turn them off to save power, donate them for remote use (supporting mi-

gration systems), or use them speculatively to increase local performance. Idle capacities in a mi-

gration system never benefit the local system.

Other techniques to increase local performance through local speculation also exist, such as file

system optimization or read-ahead caching. However, all these systems process speculative work

at the same priority as regular tasks. Thus, speculation can affect foreground performance, and

speculative tasks must explicitly limit their aggressiveness to avoid decreasing non-speculative

performance. This proposal, on the other hand, schedules speculative work at a lower priority

than all other processing, and implicitly shields foreground tasks from the presence of speculative

resource use.

 - 5 -

The remainder of this proposal is organized as follows: Chapter 2 defines the idea of non-

interfering idle-time use for resources in detail. It identifies the key principles to support such

idle-time use, and discusses how current OS mechanisms fail to satisfy these requirements. A de-

sign for OS extensions supporting non-interfering idle-time use form the main part of that chap-

ter, followed by a discussion of applications that benefit from idle-time use.

Chapter 3 discusses some key challenges with offering idle-time use of resource capacity, such as

preemption overheads, cache pollution and speculative workload generation.

Chapter 4 applies the model to idle-time extensions for the network stack. It first presents ex-

perimental evidence that highlights how current OS mechanisms fail to provide differentiated

network service, and identifies the key issues prohibiting such service under the current network

model. The final part of that chapter presents a prototype implementation of idle-time extensions

for the BSD network stack, and evaluates their effectiveness through a series of experiments.

Related work, such as real-time systems, idle-time execution and other speculative techniques

form the main part of Chapter 5.

Finally, Chapter 6 presents the plan for the remainder of this thesis research, including a timeline.

The focus will be on idle-time support for the network file system (NFS). NFS service requires

idle-time support for CPU and network service (already existing), as well as idle-time support for

disk I/O and storage. This dependency on multiple resources makes idle-time NFS a good candi-

date to study inter-resource interference, as well as investigate mechanisms for integrated sched-

uling.

 - 6 -

2 A Model for Speculative Use of Idle Resources
This chapter defines the idea of non-interfering idle-time use for resources in detail. It then identi-

fies the key principles required to support such idle-time use, and discusses how current OS

mechanisms fail to follow these principles. The later sections of the chapter present OS scheduler

extensions that enable non-interfering idle-time use. Finally, it presents several application areas

that benefit from idle-time use.

2.1 Introduction

A typical computer system contains multiple resources, normally at least a CPU and some main

memory. Usually, a system also has some persistent storage devices (e.g. disks), communication

devices (e.g. network, modem), and user I/O devices (e.g. keyboard, display, audio).

The resource use of processes can be seen as a request/response stream, where processes generate

resource requests to acquire processing capacities (e.g. “read this disk block” for a disk, “send

this packet” for the network, or “run me” for the CPU). Resources process these requests in some

order, and may generate resource responses (e.g. “here is the block you wanted” for a disk read

request). Note that some requests may not trigger a response, such as a “run me” request for CPU

capacity.

Resources can be categorized according to a number of criteria. One such categorization is ac-

cording to sharing patterns, distinguishing spatially and temporally-shared devices.

Spatially-shared devices divide their capacity into allocation units, and can serve multiple proc-

esses concurrently. Processes must lease allocation units before use. Leased capacity is unavail-

able to others; leased capacity becomes available for reuse only after a process explicitly returns

it. Storage capacity (e.g. disk space, memory swap space) is an example of a spatially-shared re-

source.

A second category of resources is temporally-shared. Unlike spatially-shared resources, such re-

sources do not subdivide their capacity for concurrent use. Instead, a single process is leased the

full resource capacity for a certain (usually fixed) period. I/O devices (e.g. network interfaces)

and the CPU are examples of temporally-shared resources.

 - 7 -

Systems may contain multiple, identical resources. For example, on a system with multiple,

channel-bonded network interfaces, a request can use any available interface. Such a device bun-

dle gains some characteristics of a spatially-shared resource, because its components can serve

multiple requests simultaneously. Another example is a multiprocessor, where the individual

CPUs execute in parallel.

Some physical devices combine aspects of temporally and spatially-shared resources. One exam-

ple is a disk drive. Its storage capacity is spatially-shared (different disk blocks allocated to dif-

ferent processes), while its I/O capacity is temporally-shared: a drive only serves a single I/O re-

quest at a time. A mechanism to support idle-time use of a disk drive must consider both these

dimensions.

User I/O devices (e.g. keyboard, audio) are a special subcategory of temporally-shared devices,

for which idle-time may not be appropriate. Users explicitly control these devices, and the OS

should not override these scheduling decisions. However, user I/O devices may share an I/O

channel (e.g. USB) with other devices. Idle-time use of the shared channel capacity is possible if

mechanisms treat user I/O requests as foreground use.

In some sense, it is possible to model spatially-shared resources as temporally-shared, by treating

each allocation unit as a separate resource with an unlimited lease time. For example, instead of

viewing disk storage capacity as a single spatially-shared resource, from another perspective each

disk block is a separate temporally-shared resource with an infinite lease time. Thus, schedulers

for such resources can be similar to schedulers for temporally-shared resource bundles.

Some OS resources are virtualized. A virtualized resource isolates its different users from one an-

other. It also presents each user with a private, virtual resource that may be larger (or otherwise

different) than the underlying physical device. Capacity of other resources is required to support a

virtualized resource when overcommitted. The main example of a virtualized resource is virtual

memory (VM). VM presents each process with an isolated address space, typically larger than the

available physical memory, by paging seldom-used parts of address spaces to secondary storage.

Virtualized resources themselves are users of other resource capacity. The simple model presented

in this chapter is not sufficiently powerful to completely describe such behavior. It will be ex-

tended in the remainder of this thesis research to support this capability.

 - 8 -

A single-tasking OS does not require resource scheduling. The single existing process can use all

resources as needed; unused resources remain idle. This typically leads to a low overall system

utilization. A multi-tasking OS can increase system utilization by running multiple processes con-

currently. All processes share the CPU and other resources; the OS allocates a share of resource

capacity to each process upon request. While this may increase execution time of a single process

compared to the dedicated case, it improves overall system utilization. For example, when a com-

pute-bound process and a disk-bound process run concurrently, each of them is able to use re-

source capacity the other left available. A disk-bound process will spend most of its time in a

blocked state waiting for device operations to finish. The compute-bound process can thus utilize

the unused CPU time of the disk-bound one. Likewise, the CPU-bound process will not require

disk access often, so the disk-bound one can utilize the disk almost fully. The net effect is that the

aggregate execution time of the two processes can be lower when they run concurrently using

multi-tasking, compared to running them back-to-back on a dedicated machine. In a way, a multi-

tasking OS is an example of using idle resource capacities for productive work. However, it fails

to actively schedule requests depending on idle capacities.

Various systems try to use idle capacity, either speculatively or non-speculatively. One established

technique is microprocessors with support for speculative execution (see Section 5.2.3.3). Such

CPUs use idle execution units and memory bandwidth to pre-fetch and speculatively execute

likely future instructions. They give total priority to non-speculative processing, and have hard-

ware mechanisms to preempt speculative uses without affecting regular execution. Other hard-

ware mechanisms manage speculative state, and keep it isolated from regular execution until

commit time (or discard time, for mispredictions). Remote execution or storage systems (see Sec-

tion 5.2.3.1) are another example of systems that try to utilize idle capacity.

A system supporting speculation must shield the side effects of speculative tasks from the rest of

the system until a prediction has been verified as correct. Similarly, a system to support non-

interfering use of idle resources must prioritize resource use. Speculative idle-time use requires

both capabilities, based on principles defined in the next section.

 - 9 -

2.2 Principles for Speculative Use

Speculative use of idle capacity depends on prioritization and preemptability between regular and

idle-time use, as well as isolation of speculative side effects. This section will formally define

these three principles as properties of two models. Informally, these principles are:

1. Prioritization: Never process idle-time requests while regular requests are waiting

for service.

2. Preemptability: Immediately preempt active idle-time use to service incoming

regular requests. Never preempt regular requests because of idle-time use.

3. Isolation: The side effects of a speculative request must remain hidden until they

are committed or discarded.

A more formal definition requires a model of resource processing. In this model, a resource is a

tuple cpCAQR ,,,,, , where R is the base set of possible requests, RQ ⊆ is a subset of re-

quests waiting for service, RA⊆ is a subset of active requests currently being serviced. ℑ∈C

is the capacity of the resource expressed as an integer, ℑ→Rc : is the capacity required to ser-

vice a given request, again expressed as an integer, and ℑ→Rp : is a priority assignment,

where higher priorities (integers) are served before others.

The active capacity A of a resource cpCAQR ,,,,, is defined as { }∑ ∈= AaacA)(. In ad-

dition, the idle capacity I of such a resource is defined as ACI −= .

A resource supports these operations:

•)(qenqueue adds a new request Rq∈ , Qq∉ to the set of waiting requests:

{ }qQQ ∩=

• ()start picks a request Qa∈ for service and moves it from the waiting set to the active

set: { }aQQ = and { }aAA ∩=

•)(afinish removes an active request Aa∈ from the service set: { }aAA =

 - 10 -

A resource must satisfy the following axioms:

• A request cannot be both queued and under service: ∅=∪ AQ

• All possible requests must be satisfiable: { } CRrrc ≤∈)(max

• Active capacity cannot exceed resource capacity: CA ≤

• Work conservation: ())(: startIqcQqCA ⇒≤∈∃∧<

Prioritization and preemptability are properties of resource scheduling, and establish idle-time

capacity as a distinct service class, described in the model above. Regular performance does not

decrease in the presence of idle-time load. However, prioritization and preemptability alone are

not sufficient for speculative use: Visible idle-time state may influence and thus interfere with

regular execution.

One example is a state inconsistency caused by an idle-time request that was preempted during an

update operation. This could occur both for kernel state (e.g. corrupt device chain) and user state

(e.g. interrupted write to a configuration file). Both may obviously affect regular use, as well as

other ongoing speculations. Another, less obvious example is where the simple presence of idle-

time state (even consistent state) can interfere with other processing (e.g. idle-time lock on a

shared file). The isolation principle prevents this scenario. It hides all speculative state from regu-

lar processing, as well as shielding the state of one speculation from that of another. Only after an

explicit commit operation does speculative state become visible. Isolation is a property of OS

processing, and requires a more high-level model, defined in Section 2.2.3 below.

One shortcoming of this model of resource operation is the assumption that resources are state-

less, i.e. that the capacities ℑ→Rc : of each request are fixed. This is not the case for all re-

sources. One example of stateful resources is disk drives. Here, earlier requests can influence the

cost of subsequent ones, by moving the disk arm towards (lower cost) or away from (higher cost)

the location of the subsequent access. During the remainder of this thesis research, the model

should be extended to describe stateful resources.

 - 11 -

All resources in an OS with speculative use of resources must support preemptability and prioriti-

zation. Without idle-time use, a system has a single bottleneck resource at any time, and the

scheduler of that resource controls overall system behavior. With idle-time use, the scenario

changes: Its goal is it to fill available capacity with useful work, and keep all resources utilized at

all times; thus, all loaded resources become bottlenecks. If some schedulers do not support idle-

time use, foreground performance may decrease. Section 4.2 presents experimental results that il-

lustrate how prioritized CPU scheduling is insufficient to provide prioritized network service.

The remainder of this section discusses the operation of resource schedulers and kernel process-

ing, and required mechanisms to extend them for idle-time use.

2.2.1 Prioritization

This section illustrates prioritization for temporally and spatially-shared resources. Prioritization

is a function of work queue management.

Prioritization: Never process idle-time requests while regular requests are waiting for ser-

vice.

 A resource cpCAQR ,,,,, supports prioritization if and only if its

()start operation picks a new request Qa∈ to start servicing such that

{ }Qqqpap ∈=)(max)(.

R1

R2

I

R1

I

Idle Period

Time

Request
Queue

Active

t1 t2 t3 t4

Idle Period

I

R2

R2

R2

Figure 1: Scheduler for a temporally-shared resource without prioritization.

 - 12 -

First, Figure 1 illustrates the operation of a FIFO scheduler for temporally-shared resources that

does not support prioritization. Before time t1, the resource is idle. At t1, request regular R1 arrives

and the resource immediately starts processing it, ending the idle period. At t2, idle-time request I

and regular request R2 arrive and are enqueued. At t3, processing of R1 finishes.

Here, the scheduler picks idle-time request I for processing, instead of regular request R2. Thus,

idle-time processing for I delays regular processing (R2 must wait until t4 before receiving ser-

vice), violating the prioritization principle. A scheduler with support for prioritization would have

picked R2 over I at t3 instead (see Figure 2).

R1

R2

R2

R1

R2

Idle Period

Time

Request
Queue

Active

t1 t2 t3 t4

Idle Period

I

I

I

I

Figure 2: Scheduler for a temporally-shared resource with prioritization.

Time

Request
Queue

Resource
Allocation

t1 t2 t3

R +75

I +50

I

R +75

I

Figure 3: Scheduler for a spatially-shared resource without prioritization.

 - 13 -

Prioritization is also critical when spatially-shared resources should support non-interfering idle-

time use. Figure 3 displays such a scenario for a spatially-shared resource with 100 allocation

units with a scheduler that does not support prioritization. Here, the resource is completely idle at

t1. At t2, an idle-time request I for 50 units and a regular request R for 75 units arrive at the re-

source. By allocating the capacity for the idle-time request first, the scheduler causes the subse-

quent allocation of R at t3 to fail due to insufficient capacity. This interferes with regular process-

ing: the process issuing R may abort or be delayed.

A spatial scheduler with support for prioritization (see Figure 4) will schedule R before I. Even

though I cannot be serviced at t3 (again due to insufficient resources), this has no impact on regu-

Time

Request
Queue

Resource
Allocation

t1 t2 t3

I +50 I +50

R

R +75

R

Figure 4: Scheduler for a spatially-shared resource with prioritization.

I

R

R

I

Idle Period

Time

Request
Queue

Active

t1 t2 t3

Idle Period

R

Figure 5: Scheduler for a temporally-shared resource without preemptability.

 - 14 -

lar use.

2.2.2 Preemptability

Similar to prioritization, preemptability is the second key principle required for non-interfering

idle-time use. This section will describe how schedulers for temporally and spatially-shared re-

source must operate to support preemptability.

Preemptability: Immediately preempt active idle-time use to service incoming regular re-

quests. Never preempt regular requests because of idle-time use.

 A resource cpCAQR ,,,,, supports preemptability if and only if it supports

prioritization, and during its)(qenqueue operation, if)(qcI < it picks a

subset AF ⊆ of strictly lower-priority active requests of sufficient capacity

such that)()(: qpfpFf <∈∀ and)(pcIF ≥+ , and then preempts these

lower priority requests)(: ffinishFf ∈∀ such that q is immediately

started following the)(qenqueue operation.

First, Figure 5 shows an example for a scheduler for a temporally-shared resource. At t1, it starts

processing idle-time request I. While I is being processed, regular request R arrives at t2. How-

ever, the resource continues to process I, delaying execution of R until t3, when I finishes.

I R

I

Idle Period

Time

Request
Queue

Active

t1 t2

Idle Period

R

Figure 6: Scheduler for a temporally-shared resource with preemptability.

 - 15 -

The scheduler in this scenario violates the preemptability principle, because it does not immedi-

ately yield the resource to the newly arriving regular request R at t2. Figure 6 shows how a sched-

uler with support for preemptability operates in the same scenario: At t2, it preempts (or aborts)

the active request I, and immediately starts processing R instead. Thus, it causes no delay for

regular processing – only for idle-time use, which is the correct behavior.

The next example illustrates how a scheduler for a spatially-shared resource supports preempta-

bility, again for a resource with 100 allocation units. At time t1 in Figure 7, the resource is com-

pletely idle. At t2, idle-time request I for 50 units arrives, and the capacity is allocated. When a

regular request R for 75 units arrives at t3, it is declined due to lack of available capacity. This

violates preemptability.

Instead of declining request R, a scheduler with support for preemptability must reclaim (part of)

the capacity allocated to idle-time use whenever it has insufficient capacity for an incoming regu-

lar request. In Figure 8, the scheduler transparently reclaims 25 of the units allocated to idle-time

use, so it can satisfy the regular request R.

Preemptability is a function of processing. Note that for most resources, preempting a request

and/or switching to another one is not instantaneous. This preemption overhead is the largest

challenge faced when supporting idle-time use. Section 3.2.2 below discusses this issue in more

detail.

Time

Request
Queue

Resource
Allocation

t1 t2 t3

I +50

I

R +75

I

Figure 7: Scheduler for a spatially-shared resource without preemptability.

Time

Request
Queue

Resource
Allocation

t1 t2 t3

I +50

I

R +75

R

I

Figure 8: Scheduler for a spatially-shared resource with preemptability.

 - 16 -

2.2.3 Isolation

The isolation principle states that all side effects of speculative execution must remain hidden,

until the system has verified whether the speculation was successful. If so, an atomic operation

makes the speculative state visible, otherwise it is discarded.

Isolation is the key principle that allows transparent speculative resource use. While prioritization

and preemptability are sufficient to establish an idle-time resource class, they alone do not enable

speculative use of that idle capacity. Without isolation, speculative state can interfere with regular

processing. One example of such interference could happen when speculative execution leaves a

system data structure in an inconsistent state, because regular use preempted it during modifica-

tion of the structure.

The state of an operating system state forms a set S that incorporates all variables and structures

visible to processes. Processes modify this state through a sequence of state operations

()nooO ,,1 K= , where each operation Oo∈ is a function SSo →: that transforms the state.

The order of the operations depends on process scheduling, and is not relevant. 0S is the initial

state before processing begins, 1S is the state after the first operation was processed, and nS is the

final state after all n operations. The intermediate state after k operations is defined as

)(1−= kkk SoS . The intermediary states for a given sequence of operations O and a starting state

0S form a sequence ()nSSS ,,0 K= . For a pair of operations () OOoo yx ×∈, , yx oo < if

yx < .

Given a sequence of operations O and a starting state 0S , speculative idle-time use in this model

is a new sequence of speculative operations ()miiI ,,1 K= . They operate on an extended OS state

SS ⊃′ , such that SSix ′→′: , and require an extended starting state 00 SS ⊃′ .

A combined sequence of operations is any sequence IOC ∩= , which retains the relative order

of the operations of O and I , such that for all pairs of operations () OOoo yx ×∈, , there exists a

pair of operations () CCcc sr ×∈, such that () () ()syrxsyrx cocococo <⇒<∧=∧= , and

similarly for I .

 - 17 -

Isolation in the context of the above model is defined as follows:

Isolation: The side effects of a speculative request must remain hidden until they are

committed; or must be discarded.

 Given a sequence of operations O , a starting state 0S , a sequence of specula-

tive operations I and an extended starting state starting state 0S′ , an OS sup-

ports isolation, if and only if the side effects of all speculative operations are

limited to the extended state, such that 1: −=∈∀ xxx SSIi . In other words, all

speculative operations Iix ∈ may only modify 11 \ −−′ xx SS .

This model supports pre-executing a regular operation, in which case a speculative operation

Ii∈ is a duplicate of a regular one (oiOo =∈∃ :) and oi < in the combined sequence

IOC ∩= . In this case, o is speculatively executed earlier in the sequence (as i), but the ef-

OS StateProcess

Process

Virtual
OS State

Spec. Task

Spec. Task
Virtual

OS State

OS State

Process

Process

Process

Figure 9: From shared OS state (left diagram) to virtualized OS state for speculative tasks (right diagram).

 - 18 -

fects of the execution are kept in the extended state. During execution of o , they are moved from

the extended into the regular part of the state space.

Isolation virtualizes the OS state: Instead of sharing the OS state between all regular and specula-

tive tasks, each speculative task executes with its own shadow copy of the state. Regular proc-

esses still access and share the master copy of the state, as before. Figure 9 shows the current

sharing situation on the left side, and the virtualized OS state on the right. Virtualized OS state is

similar to the concept of virtual memory, where each process executes in a separate address

space.

When a speculative task modifies OS state, a private shadow copy of the OS state is created

(copy-on-write); these shadow copies are invisible to regular processing. The OS updates the

shadow copies together with the master copy on regular use. Update conflicts with some shadow

VS1S1

S2 VS2

OS State

P1

P2

(1)

(2)

(3)

VS1S1

S2 VS2

OS State

P1

P2

(1)

(2)

(3)

Figure 10: Non-speculative modification to the master OS state (left diagram), and commit operation of speculative
state (right diagram).

 - 19 -

copies cause speculative tasks that depend on them to abort (or enter recovery, if supported). For

successful speculations, speculative state moves from the shadow copies into the master copy

through an atomic operation. Remaining shadow copies are also updated during this commit op-

eration.

Figure 10 gives an example of operations on the virtual OS state. The diagram on the left shows

how an OS state change (1) by regular process P1 results in immediate updates to the virtual

states VS1 and VS2 belonging to speculative tasks S1 and S2, in steps (2) and (3).

The right diagram of Figure 10 shows how a speculative modification of VS1 by S1 in step (1) is

atomically committed back to the master OS state (speculation successful) in step (2) and thus

becomes visible to regular processes P1 and P2. Furthermore, the commit operation triggers an

immediate update (3) to speculative state VS2, as if a regular process had modified the master OS

state.

The completed network stack extensions for idle-time use do not establish isolation yet – mecha-

nisms to guarantee isolation will be investigated as part of the proposed thesis research (see

Chapter 6).

2.3 Application of the Model to OS Extensions

One of the main tasks of an OS is resource management. To support a wide variety of applica-

tions, a general-purpose OS employs simple and predictable resource schedulers, trying to pro-

vide fair service to all users. Section 2.1 above presented three key principles for schedulers with

support for non-interfering idle-time: prioritization, preemptability, and isolation. This section fo-

cuses on OS extensions to support these principles, as well as additional mechanisms required for

effective speculative idle-time use.

2.3.1 Prioritization

Most current OS schedulers do not support prioritized access. One exception is typically the CPU

scheduler, since the CPU has traditionally been the bottleneck resource of a system. Optimizing

CPU allocation was thus an important factor to maximize overall system utilization for a particu-

lar workload.

 - 20 -

UNIX systems use a multilevel feedback queue, a variant of a round-robin (RR) scheduler. It fa-

vors bursty processes, which do not fully utilize their allocated CPU quantum by raising their pri-

ority over time, and punishes compute-bound processes by lowering theirs. Most I/O-bound proc-

esses are bursty – they block during device operations – and thus achieve high CPU priorities.

Commonly, the CPU scheduler offers the user processes some degree of control over their priori-

ties. Non-privileged processes may lower their priority from the default, while increasing the pri-

ority is restricted to privileged processes. However, monopolizing the CPU through this mecha-

nism is impossible; it merely adjusts the share of processing time and does not establish total pri-

ority.

Simple first-in-first-out (FIFO) schedulers organize access to most other resources, such as disk

and network devices. While FIFOs by themselves do not assure fairness, they can do so in com-

bination with a fairness-enforcing CPU scheduler (because a process cannot issue any resource

requests without a CPU to run on). These other resource schedulers typically do not allow proc-

esses to influence their scheduling decisions.

Both FIFO and RR schedulers do not satisfy the prioritization principle; all requests receive equal

service. Even a multilevel feedback queue only allows adjustment of shares, and does not prevent

starvation. To support non-interfering idle-time use, resource schedulers must instead replace

such scheduling disciplines with priority queue with two service classes, for regular and idle-time

requests.

The CPU scheduler on many POSIX-compliant systems [POSIX 1993] already offers this capabil-

ity. The POSIX CPU scheduler has three distinct priority classes for processes (real-time, regular

and idle-time), each managed by its own multilevel-feedback queue. Processes in higher classes

preempt any lower-class ones. Consequently, processes running under the POSIX idle-time

scheduling class will not receive any CPU time while processes in higher classes are runnable.

Starvation of lower-class processes occurs when higher-class load increases to saturation. Thus,

the POSIX scheduler satisfies the prioritization principle. Experiments with the POSIX scheduler

show that it can isolate regular use from idle-time requests to within 1%. Some other experimen-

tal CPU schedulers also support an idle-time processing class [FORD 1996] explicitly.

 - 21 -

Other resources, most importantly disk and network, do not often offer different levels of service.

Chapter 4 below presents an extension to the network stack that replaces its many FIFOs with

suitable priority queues. A similar extension to the disk scheduler is under investigation.

2.3.2 Preemptability

Service prioritization alone, however, is not sufficient to guarantee non-interfering use of idle ca-

pacity. Preemptability is a second key requirement. Without it, a currently executing idle-time re-

quest would delay a newly arriving regular one, because the scheduler would let it run to comple-

tion – a form of priority inversion [LAMPSON 1980]. Instead, the scheduler must immediately

abort or suspend idle-time use whenever a new regular request arrives. Thus, the priority queues

proposed in the previous chapter to replace FIFOs must support preemptability.

Preemption cost is the key factor currently limiting the deployment of idle-time use. Mechanisms

to minimize it are critical. Resources that frequently switch between different requests often have

hardware support to minimize this overhead. One example is CPUs, which typically offer instruc-

tions to save and restore the register set. However, most other resources do not have hardware

support for preemption. For example, interrupting a disk output request in the middle of a device

write operation is often impossible, because disk controllers normally do not support preemption

(though some are proposed [SPRUNT 1988]). This is an example of physical priority inversion.

Logical priority inversion occurs whenever preempting a lower-priority operation is impossible,

because a shared resource would remain in an inconsistent state.

Another factor that sets CPUs apart from other resources is that they typically serve a process for

longer than a single resource request (i.e. a single instruction). A time quantum limits the maxi-

mum amount of time a CPU will service each process. It also minimizes the preemption over-

head, by reducing the frequency of preemptions relative to instructions.

The idea of a time quantum may also apply to other resources with a high preemption cost. Disk

drives are one example. A disk I/O request is typically uninterruptible, so the preemption cost of

disk I/O is high (within the same order of magnitude as the service time). If the disk scheduler al-

locates itself to a service class for a certain time, preemption overhead decreases. For example,

with a time quantum of 1 second for regular use, the disk scheduler would only switch to idle-

 - 22 -

time use once every second, instead of possibly after each completed request (i.e. each few milli-

seconds). The drawback is of course that idle-time requests incur an additional delay.

Schedulers for spatially-shared resources must thus allow transparent use of idle allocation units.

Resource capacity allocated for idle-time use must be reclaimable whenever it is required to ful-

fill a regular resource request. One example is allocation of disk space to processes. A simple

first-come-first-serve scheduler prohibits the non-interfering use of idle resource units, because

when it allocates available resource units for idle-time use, they become unavailable for regular

use. A subsequent (large) request for allocation units from a regular process may thus fail, be-

cause idle-time use was not preempted. Section 2.2.2 above presented an example.

This has interesting consequences for users of idle-time spatial capacity, as previously allocated

capacities can disappear upon reallocation to satisfy a regular request. One example of such a

case is reclaiming disk blocks used for idle-time storage on a full disk when a regular process

starts writing. This does not occur under the regular service model, where a process can rely on

allocated resources to be available until it explicitly returns them. Consequently, applications us-

ing idle spatially-shared resource capacity must adapt to such situations, or at least gracefully

abort. This is similar to mechanisms for establishing preemptability (see Section 2.3.2 above),

where speculative state can disappear due to regular use.

2.3.3 Isolation

Isolation is the principle of hiding side effects of idle-time use from regular resource users. One

such side effect is a decrease in performance, which the prioritization and preemptability princi-

ples already concentrate on. Isolation focuses on all other user-perceivable aspects of idle-time

support.

Generally, the execution environment observed by regular processes in the presence of idle-time

use must be identical to a scenario in which idle-time use is absent from the system. For example,

using the regular file system to store idle-time data (even if ample disk space is available) is prob-

lematic, since the files would then be visible to regular processes, and could interfere with regular

processing.

 - 23 -

Ideally, the system would use idle resources to provide an isolated virtual execution environment,

in which speculative tasks execute. This is similar to jail sandboxes [KAMP 2000] supported by

some Unix variants that restrict the set of system calls that super-user processes can execute, to

improve system security.

Isolation requires a different set of capabilities from the sandbox environment; namely, a virtual-

ization of OS state. Each speculation would execute in a separate sandbox, completely separating

their side effects from one another, and from the regular OS state. Only side effects of correct

speculations become visible in the regular system.

Complete isolation requires the elimination of all shared state between sandboxes, a difficult

goal, similar to the elimination of all covert channels between two parties (each piece of shared

state presents a potential information leak). However, the current idle-time network subsystem

does not yet provide isolation, but is already effective in shielding regular use from idle-time traf-

fic (to within 1-2% of throughput, see Section 4.5).

Thus, while complete isolation is theoretically required to eliminate all possibilities for interfer-

ence, it may be sufficient to virtualize a limited subset of OS state to establish isolation in most

practical scenarios. A detailed investigation of mechanism to support isolation is part of the pro-

posed thesis research.

2.4 Integrated Scheduling

Another challenge with speculative processing is optimization of idle-time use. Starting specula-

tive processing of a task that requires multiple resources is problematic when some of them do

not currently have idle capacities.

For example, assume idle-time process A requires some idle CPU and disk capacity, and idle-time

task B requires idle CPU capacity and idle network bandwidth. Assume the disk is fully loaded

with regular requests. Speculatively starting A in this scenario is not beneficial, since its comple-

tion is unlikely due to unavailable disk capacity. However, B may finish successfully, since its re-

quired resources are not fully loaded. In this scenario, picking B instead of A for speculative exe-

cution has a higher chance of filling idle capacity with useful work.

 - 24 -

Thus, speculative idle-time use could benefit from integrated scheduling, where initiation of can-

didate idle-time tasks depends on the available idle capacity at each point in time. While such a

mechanism is not required for correct speculative use, in can increase its effectiveness, by de-

creasing partial processing due to unavailable idle-time capacity.

Integrated scheduling requires candidate speculative tasks to disclose their planned resource use.

While this is unacceptable for regular processing, speculative idle-time tasks must already include

mechanisms to gracefully handle disappearing or corrupt speculative state, which regular process

need not. Thus, resource usage hints are not the only difference between regular and idle-time

processing. Furthermore, they only enable optimized speculative processing – they are not a re-

quired component.

The proposed research for the remainder of this thesis includes a proof-of-concept design for such

a mechanism for integrated idle-time scheduling.

 - 25 -

3 Discussion
This chapter discusses implications of speculative idle-time use. First, it investigates which appli-

cations could benefit from the availability of idle-time use. Then, it examines several potential is-

sues with the proposed model.

3.1 Applications and Benefits

Speculative use of idle resource capacity achieves performance improvements through latency

hiding. For temporally-shared resources (e.g. network bandwidth), the OS speculatively schedules

probable future resource requests during idle-times. Thus, speculative requests execute before a

process issues them, and the OS caches the results. For correct predictions, this approach avoids

much of the latency associated with processing the request in a regular fashion – to the process, it

appears to execute faster than it would on an unmodified system.

Idle, temporally-shared capacity permits the kernel to prefetch remote data. If the peer also sup-

ports idle-time use, pre-sending data for speculative storage is possible. This hides the execution

delay of the operation for correct predictions.

Unused capacity of spatially-shared storage resources can also hide latencies. In this case, how-

ever, the performance improvement is a result of speculatively storing information that is costly

to obtain. Any data item whose access involves a delay is a candidate for speculative storage.

Caches are the main application of idle spatially-shared capacity. A system’s storage facilities

form a hierarchy according to their access delays. Capacity at higher (faster) levels is typically

costly and smaller, while capacity of lower (slower) levels is large. Caching data from lower lev-

els of the hierarchy at higher levels improves performance, by reducing access delays. Swapping

is the inverse of caching: It pushes data from higher into lower levels, to simulate larger virtual

capacity at the higher level.

One major issue in caching is cache size. Caches reduce the available storage capacity for regular

use. Excessively large caches can force the system to swap part of the working set of a process to

lower storage hierarchies, and thus decrease overall performance. On the other hand, an ex-

tremely small cache size limits the hit rate, and thus the obtainable benefit. Ideally, a cache should

 - 26 -

always use any idle capacity available at a certain level in the storage hierarchy, and grow or

shrink according to the capacity use.

Using idle capacities for caching (instead of regular capacities, as is current practice) solves this

issue. Aggressive caches can make maximal use of idle available capacities. The system will

automatically shrink the cache and reclaim capacity for regular users. Optionally, the cache could

participate in the reclaiming, by releasing infrequently used capacities to the system.

3.1.1 Network Service

One important group of applications focuses on improving user-perceived network service.

Speculation can reduce both connection-open latencies and transmission times. The key idea here

is to trade idle current bandwidth for a possible future latency reduction [TOUCH 1992]. Ideally, in

a network with support for idle-time use, lower-priority packet processing will only occur when

resources would have been idle in the absence of such traffic.

One well-known application of this idea is web prefetching [PADMANABHAN 1996]. It would

greatly benefit from the availability of idle resources use: First, transmitting prefetched data using

idle network resources completely shields regular network users from its presence. Consequently,

the prefetcher no longer needs to limit its aggressiveness to prevent monopolizing the network

bandwidth. Second, larger caches become possible by using idle storage space for the prefetched

data.

Even without using idle storage space for caching prefetched information, current idle bandwidth

can reduce future network latency, by prefetching the means [COHEN 2000]. This scheme does not

prefetch any data, but instead pre-negotiates the means to transfer future data, such as pre-

opening TCP connections, or pre-resolving DNS names. Speculative execution of these opera-

tions creates very little state compared to caching the data, so idle-time access to storage capacity

may not be necessary.

Another technique described in [COHEN 2000] is pre-warming a TCP connection, by pre-sending

a small amount of throwaway data over a pre-opened connection. This may pre-establish addi-

tional state in the end system and router caches, and thus further improve performance. Using idle

network capacity for this purpose improves on the original proposal, by permitting a host to pre-

 - 27 -

send probe packets without interfering with regular traffic. Thus, larger amount data can be pre-

sent, allowing TCP to better estimate the RTT and congestion window for the connection. This

may result in a better network throughput for later, non-speculative transmissions over the pre-

warmed connection.

Pre-execution of two additional network operations during idle time (to "prefetch the means")

could be effective. One is to speculatively initiate path MTU discoveries [MOGUL 1990] to likely

future hosts. A PMTU discovery can add one or more round-trip-times (RTTs) to the connection-

establishment delay. Hosts supporting PMTU discovery implicitly do so whenever a connection is

opened (speculative or regular). Another operation is speculatively initiating IPsec key negotia-

tions (IKE) [HARKINS 1998] with likely future peers, which also could also save several RTTs

[HARKINS 1998]. With current proposals for opportunistic encryption [RICHARDSON 2001], IPsec

negotiations may become much more frequent. Speculatively executing an IKE exchange during

idle-time can reduce the user-perceived connection-open delays for successful predictions.

All previous applications required idle bandwidth to operate. However, even without idle band-

width, a server system can use idle local resources to increase its network performance. Most

servers (e.g., NFS, FTP and web) incur packetization overhead for each requested object by read-

ing it from the disk (or disk buffer) and splitting it up into a packet chain before transmission. For

static objects, caching the packets in idle storage1 can reduce this overhead for repeated accesses

[LEVER 2000]. As packetization overhead increases – for example, with IPsec processing – the

potential for improvement becomes even greater.

Note that idle-time use of the network requires router support. However, the new service model is

a simple extension of the current Internet service model, where routers (and hosts) treat packets

equally according to a best-effort discipline [CLARK 1988]. Idle-time use does not change this

fundamental model: The network may still reorder, drop, or duplicate packets. Idle-time network-

ing is strictly a per-hop function of giving higher processing preference to certain packets. Chap-

ter 4 discusses idle-time networking in more detail.

1 Jon Postel. Private Communication. 1998.

 - 28 -

3.1.2 Disk Service

All the applications for speculative use of idle resources described above mainly use idle network

bandwidth, and to a lesser degree memory and CPU. Speculatively using idle disk capacity (both

I/O bandwidth and disk space) has also the potential to improve system performance.

Most file systems already use read-ahead techniques to improve input performance [PATTERSON

1995]. A straightforward improvement would be to execute read-ahead prefetches (with are

speculative by nature) with idle disk resources, and move the disk buffer caching them into un-

used physical memory. Prefetches would then no longer interfere with regular read operations,

and large idle-memory disk buffer sizes would not limit memory availability for regular uses.

Another technique that would benefit from the availability of idle-time disk service is disk block

replication [AKYUREK 1995]. This approach spreads replicas of frequently used disk blocks out

over the entire disk. In effect, it moves the data closer to the disk arm, reducing arm movement

and thus access times. One drawback of this scheme is that replicas decrease available disk space,

and replica management uses disk bandwidth. Using idle disk space and bandwidth would miti-

gate these shortcomings.

The inverse of the previous scheme is to speculatively move the disk arm near spots of likely fu-

ture accesses during idle time [KING 1990][MUMOLO 1999]. Unlike the disk block replicators,

this approach does not transfer or cache any data, and the memory and disk subsystems need not

support use of idle capacity. The drawback is that replication can have better prediction rates, be-

cause the likelihood of the arm being near the data increases with the replication factor.

Prefetching and caching file system meta-data is another technique to increase file system per-

formance [MOLANO 1998]. As with many caches, choosing the correct size is critical for system

performance. Using idle memory for the cache solves this problem, as the cache will automati-

cally shrink as memory use by regular processes increases.

Many file systems must periodically checked for inconsistencies due to loss of power, etc. As part

of an improvement to the fast file system, McKusick proposes a file system checker that continu-

ally monitors and fixes file systems for inconsistencies [MCKUSICK 1999]. Such a process would

be a prime candidate for execution with idle CPU and disk resources. Similarly, adaptive tech-

niques to optimize performance of log-structured file systems require periodic reorganization of

 - 29 -

disk contents [MATTHEWS 1997]. Executing these tasks with idle resources could improve overall

system performance by minimizing interference with regular use.

3.1.3 Application-Layer Uses

Application-layer uses for idle resources also exist. One such application is an improved nice util-

ity to schedule periodic optional maintenance tasks in a system. Examples of such tasks are

checking for viruses, defragmenting the file system, and auditing system security.

Non-optional system management tasks, typically run through cron [REZNICK 1993], also benefit

from using idle-time resources. Cron runs specified tasks at certain times. Simply running cron

using idle resources is not sufficient, because regular resource use could then prevent scheduled

cron tasks to miss deadlines. Deadline-bounded backgrounding is an extension to cron that allows

scheduling of tasks during time intervals. Many cron tasks are maintenance operations that do not

need to run at fixed times, as long the system could guarantee they run within a certain time in-

terval. For example, instead of scheduling a regular disk cleanup explicitly at 2am (because re-

sources tend to be idle at that time of the day), the system would schedule an idle-time disk

cleanup anytime between 1-2am. If the task did not run by 2am due to unavailable idle resources,

it would then execute using resources regularly.

Under this model, foreground processing can be isolated from the presence of periodic back-

ground tasks by pushing those into idle periods before a deadline. If insufficient idle capacity is

available before the deadline, the system switches a cron task over to foreground execution. Thus,

in the fallback case, operation is similar to regular cron, while still isolating regular use when suf-

ficient idle capacities are available.

3.2 Challenges

Several issues affect the feasibility and effectiveness of a mechanism to use idle resources specu-

latively. The most obvious is the distribution of idle times for a system’s resources for a given

workload. If idle capacities are rare (meaning resources are mostly fully utilized), the chance for

performance improvements is low. The same is true if idle times are of short duration (before

regular use continues). As mentioned in Chapter 1, however, ample idle capacity is usually avail-

able.

 - 30 -

The remainder of this section discusses other issues affecting the ability to use idle resources

speculatively in more detail.

3.2.1 Inter-Resource Interference

Most computer systems contain multiple resources, usually at least a CPU and some memory.

While prioritization and preemptability extensions to all resource schedulers are necessary to es-

tablish non-interfering idle-time use, they alone are not sufficient. In a multi-resource system, in-

teractions between resource schedulers (even prioritized, preempted ones) can cause interferences

between regular and idle-time use.

Inter-resource interference occurs because processing inside most kernels is an intricate combina-

tion of queueing, timeouts, interrupts, and blocking and resuming processes. The upper half of a

typical kernel implements the system call API, the lower half hardware-dependent drivers. The

upper and lower halves communicate through a set of work queues. The rationale behind this

processing scheme is optimization of resource utilization, not prioritized use. The CPU scheduler

controls process access to the top half – processes that are blocked cannot issue resource re-

quests. The lower half, however, executes asynchronously, driven by device interrupts and sig-

nals. Interrupt processing at the lower half has priority, and always preempts the upper half (or

user space execution).

For example, when a process issues a resource request via a system call, the kernel simply en-

queues it in the work queue of the appropriate resource and signals the resource scheduler to start

processing. The resource scheduler immediately dequeues the request, hands it to the resource for

processing, and then relinquishes control to the upper half. The upper half blocks the calling

process until the lower half signals completion, and the CPU scheduler switches to another run-

nable process. When the resource is finished processing the request, it will raise an interrupt. The

CPU starts executing the corresponding interrupt handler, preempting all other processing. The

interrupt handler for a resource transfers any response data from the hardware to the input buffer,

if the request returned any, and signals to the upper half that the request processing is complete.

This processing scheme raises several issues: First, consider the case of a finishing idle-time re-

quest, when the CPU is currently busy executing a regular process. In that case, interrupt process-

 - 31 -

ing on behalf of an idle-time request preempts regular use of the CPU, and violates the preempta-

bility principle: idle-time processing for one resource interrupts regular processing on another.

Second, most interrupt handlers do not relinquish control of the CPU at this point. Instead, they

check whether the work queue holds additional requests, and start processing them. The rationale

for this scheme was optimized resource utilization (waiting request are started without additional

context switches). This can amplify the problem: the newly starting idle-time requests could again

interrupt regular processing in the future.

In some cases, this processing scheme can also violate the prioritization principle. In the example

above, assume the interrupted process was about to issue its own requests to the resource. The de-

lay in relinquishing the CPU prevented it from issuing these regular requests, and resource sched-

uler fills this false idle capacity with more idle-time requests. Not only was the generation of

regular resource requests delayed, they may also incur a preemption overhead, because the re-

source must switch from idle-time to regular use. Here, a problem with one resource scheduler

creates ripples which cause additional interference for other resources.

Thus, resources need to cooperate to establish non-interference. The proof-of-concept design of

networking extensions for idle time use (see Chapter 4) controls some inter-resource interference

by controlling transmissions at the network layer.

3.2.2 Preemption Overhead

The largest challenge faced to support non-interfering idle-time use of resource capacity is pre-

emption overhead. For most resources, aborting one request and switching to another involves

some amount of work, and thus incurs a delay. For example, switching the CPU from one process

to another requires a context switch (swap of the register set), before execution can continue.

Even worse, some resources do not support preemption. In that case, eligible requests must wait

until the currently executing one finishes, even if their higher priority should allow them immedi-

ate access to the resource. Direct-memory-access (DMA) devices (such as disk drives or network

interfaces), which move data to and from memory without involving the CPU, fall into this cate-

gory, because DMA transfers are usually non-preemptable. Delay due to non-preemptable service

is another kind of preemption overhead.

 - 32 -

Figure 11 illustrates this cost for a regular request R by comparing scheduling without idle-time

use (top diagram) and in the presence of an idle-time request I (lower diagram). In the lower dia-

gram, idle-time request I starts processing at t1. At t2, regular request R arrives at the resource. It

immediately starts preempting I, but aborting request I incurs a preemption cost (depicted by X).

Thus, R cannot start processing until t3, whereas it could start as early as t2 in the absence of I (top

diagram).

While zero-cost preemption is feasible on CPUs (the designers have full control over the system

hardware), it is almost impossible to achieve for an OS, simply because most hardware does not

support it. Each time a resource switches from idle-time to regular use, a preemption cost incurs.

Without idle-time use, the resource would have been unused, ready to immediately serve the new

request. Thus, regular performance decreases.

Without zero-cost preemption overhead, non-interfering idle-time use is impossible. Thus, the key

issue becomes minimizing preemption costs. The hope is that a larger performance increase due

to the ability to speculatively use idle resources compensates for a small performance decrease

due to preemption overheads, in the majority of cases. The pathological case is a workload with

unlimited speculative load, where a regular request immediately follows each speculative request

I R

I R

Idle Period

Time

Request
Queue

Active

t1 t2 t3

Idle PeriodX

RIdle Period

Request
Queue

Active Idle Period

R

R

Figure 11: Preemption cost due to idle-time use (bottom diagram), compared against the basic case (top diagram).

 - 33 -

as it starts executing, and all speculations fail. Thus, each request incurs the preemption overhead,

and speculation never results in a performance increase.

While regular performance will truly suffer in the pathological case, performance for more realis-

tic workloads may still be acceptable. Most resource use tends to be bursty; a number of back-to-

back regular requests will interrupt idle-time use. Thus, the whole request chain only incurs a sin-

gle extra preemption cost. Additionally, preemption cost varies greatly for different resources. A

CPU context switch typically takes a few nanoseconds, while a disk request may take several mil-

liseconds. It may be possible to disable speculative use for resources for which the aggregate pre-

emption cost (i.e. the impact on regular performance) becomes too great, but continue to allow it

for other resources.

Additionally, the resource can eliminate the preemption overhead in special cases where it can

predict the next occurrence of a regular request. In such a case, it can stop idle-time processing

ahead of time, to push the preemption overhead into the idle period. To an arriving regular re-

quest, the resource seems idle, and no preemption cost delays it. For certain periodic workloads,

or resources that require prior reservation, such a scheme is possible.

3.2.3 Cache Pollution vs. Pre-Load Effect

Another issue with speculative use of idle capacities may be cache pollution: Many hardware and

software caches exist in a typical computer system to speed up operation. They replicate fre-

quently/recently used data in faster storage space, to reduce retrieval latency on future use. Be-

cause cache sizes are limited, speculative operations may create cache state that removes entries

created by regular requests. This may increase the delay of a future regular resource request.

Thus, regular resource use can be slower due to the presence of speculation in the system – which

violates the isolation principle. To prevent this effect, it may be necessary to disable caching dur-

ing speculative processing [DOUGAN 1999] when regular caches grow large enough to prevent

speculative storage. This will slow down idle-time use, but because it is not critical by definition,

this performance decrease may be acceptable.

However, in other scenarios, leaving caching enabled during idle-time use may increase future

regular requests. Some studies indicate that speculative use can pre-load caches with useful data

 - 34 -

for later regular uses [KWAK 1999][PIERCE 1994]. In that case, the regular processing benefits

from cached speculative state.

Thus, it can be beneficial to violate the isolation principle, and to allow pre-loading of caches. A

mechanism to determine whether a speculation is likely to result in cache pollution or a pre-load

could increase system performance.

3.2.4 Speculative Workload Generation

Effectiveness (hit-rate) of the speculatively executed requests is another issue with speculative re-

source use. A higher rate of correct predictions utilizes idle capacity better with useful work, im-

proving system performance. Thus, generation of candidate requests for speculative execution

with idle capacities is critical. Ideally, an OS would automatically identify probable future re-

source requests, and speculatively execute them with idle resources. That way, speculative execu-

tion is transparent to processes; application modifications to take advantage of the speculative

execution facility are not required.

Unlike the instruction stream processed by the CPU, the stream of resource requests served by the

OS is not static. The system cannot simply look ahead at the next requests in the stream, as a CPU

can. In addition, a branch in the CPU’s instruction stream results in only two possible future paths

of execution, while the set of possible resource requests is typically much larger. Furthermore,

conditional branch or indirect jump instructions are the only events that introduce ambiguity into

an instruction stream, and prediction methods can specifically target those cases. In a given re-

source request stream, any request introduces ambiguity – the next request is unknown until is-

sued.

Automatically deducing good candidate requests for speculative execution is thus a much harder

problem than identifying likely future instructions in the instruction stream. In some sense, it is

comparable to predicting branches in self-modifying code. Simple general strategies, such as ran-

domly picking one branch path, which on average is correct half the time for the instruction

stream, are thus not effective. This proposal thus assumes that processes explicitly generate re-

source requests for speculative execution. The rationale behind this scheme is that processes

should have better information for an informed decision on their likely next resource requests

than the OS.

 - 35 -

However, automatic deduction of candidate requests is effective for a limited subset of specula-

tive idle-time use (i.e. prefetching disk blocks) [CHANG 1999]. It may be possible to extend this

scheme to other common scenarios, to improve performance for applications that do not explicitly

support idle-time use.

3.2.5 Miscellaneous Issues

Priority inversion [LAMPSON 1980] happens when a higher-priority process must wait for the

completion of a lower-priority one that holds a required resource. The higher-priority process

could block indefinitely while a third intermediate-priority process prevents the lower-priority job

from finishing its resource use. However, only two priority classes (regular and idle-time) exist in

this proposal, so priority inversion cannot occur for temporally-shared resources. For spatially-

shared resource, the proposed system aborts resource use by the lower-priority process, and real-

locates the capacity, avoiding priority inversion.

Speculative execution happens in a much more volatile environment than regular execution. The

OS may delay speculative requests indefinitely, and it may abort them at any time. Furthermore,

speculatively stored data may disappear when a regular user reclaims the space. This means that

users of idle-time resource capacities (processes in the process-driven approach, the kernel itself

in the kernel-driven approach) must gracefully handle a wider variety of error conditions than

regular users.

Finally, increased power consumption and mechanical wear-and-tear may be issues encountered

with using idle-time speculatively. Because idle-time use will ideally constantly utilize all re-

sources, the power requirements of a system, as well as mechanical wear-and-tear on moving

parts (e.g. disk drives) may be increased. This is especially important for mobile devices, which

operate under stricter parameters than their stationary counterparts do.

 - 36 -

4 Idle-Time Networking
A network service for idle-time use must follow the prioritization, preemptability, and isolation

principles defined above. Thus, it should treat regular and idle-time packets differently; transmit-

ting packets queued at a router in order of decreasing priority, and dropping lower-priority pack-

ets from a full queue when higher-priority packets arrive. This chapter focuses on extending the

end system for such a network model, and assumes network support is present.

After defining the ITN model in the next section, experimental results presented in Section 4.2

show that current OS mechanisms are not effective in establishing such different service levels

for network traffic. The event-driven, asynchronous nature of network stack processing interferes

with attempts to use CPU-scheduler-based mechanisms as offered by current systems to control

network send behavior.

Observations gained during an analysis of network stack operation form the basis of a design to

support ITN, comprising of a simple set of extensions to the current BSD network stack. These

modifications concentrate on the sender’s network layer; transport protocols and socket API re-

main unchanged. Section 4.4 describes these extensions in more detail.

The final section of this chapter evaluates a proof-of-concept implementation of these mecha-

nisms in the BSD network stack. Experimental results suggest that the proposed extensions are

effective in establishing ITN service: Higher-priority senders can achieve 97-99% of the through-

put in the basic case, effectively isolating them from the presence of concurrent lower-priority

traffic.

4.1 Idle-Time Network Model

The idle-time networking (ITN) model used throughout this chapter is a simple extension of the

current Internet service model, where routers (and hosts) treat packets equally according to a best-

effort discipline [CLARK 1988]. Note that ITN does not change this fundamental principle: The

network may still reorder, drop, or duplicate packets. ITN is strictly a per-hop function of giving

higher processing preference to certain packets. In the ITN model, packets belong to either of two

classes: foreground (FG) or idle-time background (BG) traffic. Ideally, BG packet processing will

 - 37 -

only occur when resources would have been idle in its absence. Under real conditions (non-

interruptible packet transmissions, non-zero-cost queue operations), complete isolation of FG

traffic is difficult to achieve.

Router support for ITN is straightforward: A router will always forward all FG packets in its

queue before any BG packets, and it will drop BG packets from a full queue to make room for ar-

riving FG ones. In other words, ITN replaces a router’s FIFO queue with a two-layer priority

queue. FG packets continue to experience best-effort service, while BG packets see sub-best-

effort (i.e. least-effort) service. This is not a new idea: The original IP specification [POSTEL

1981] contains support for a precedence field in the datagram header to indicate dropping and

forwarding priorities.

More recently, some of the proposed extensions to support differentiated services in the Internet

[BLAKE 1998] are similar to the idea of ITN: Expedited forwarding (EF) [JACOBSON 1999] rede-

fines a value in the IP type-of-service field to mark some packets with a higher forwarding prior-

ity. It also suggests configuring a rate limit for expedited packets, in order to prevent starvation of

lower-priority traffic. While EF focuses on providing virtual leased lines with a fraction of the ca-

pacity of the physical link, in the absence of a configured rate limit for expedited traffic it be-

comes one possible implementation of ITN: Expedited packets belong to the FG class, and regu-

lar packets belong to the BG class.

ITN can also be seen as a combination of two other proposals from the differentiated services

community: One is marking packets as in or out at routers [CLARK 1998], indicating whether they

are in compliance with their assigned traffic class. During congestion, packets marked as out are

give drop preference (similar to ATM’s cell-loss-priority bit [ATM 1999] or frame relay’s discard-

eligible bit [THIBODEAU 1998]). The other proposal is a scheme where routers forward packets in

strict order of priority [GUPTA 1997]. Together, these proposals can implement ITN by giving

drop preference and lower forwarding priority to BG packets.

In a previous paper, we have investigated the idea of ITN service at the application layer, by dis-

tinguishing between FG and BG web transactions [EGGERT 1999]. The LSAM project [TOUCH

1998] built on this idea and used speculative background multicasting of web transactions to pre-

load self-organizing, distributed caches with popular content.

 - 38 -

The network stack of an ITN end system must implement the same outbound and inbound proc-

essing mechanisms as ITN routers. However, while routers only need to concern themselves with

prioritizing packets during forwarding, ITN support for end systems is more complex. Routers

operate at the network layer, while packet processing on end systems covers the whole depth of

the protocol stack. Thus, end systems need to satisfy additional requirements to support end-to-

end ITN. Processes need CPU time and possibly other resources to send and receive packets.

Thus, simply replacing the FIFO of a network interface with a priority queue – which enables

ITN on routers – is not sufficient: Other resources participating in packet processing may be the

bottleneck, and dominate system behavior.

4.2 Idle-Time Networking with Current OS Mechanisms

A fully loaded computer system has usually a single bottleneck resource at a time, depending on

its workload. Traditionally, that resource has been the CPU, but on many network servers, the

network interface may be the bottleneck resource.

Having a well-known bottleneck allows optimizations for that particular resource to control sys-

tem behavior. One example is the UNIX multilevel feedback queue for CPU scheduling, which

originated on time-sharing systems where CPU time was scarce and needed to be carefully con-

trolled. Other examples are recent proposals for providing multiple levels of network service

[BLAKE 1998][CLARK 1998]. Both cases strive to improve control over the bottleneck resource,

to optimize system behavior.

With speculative use of idle resources, the picture changes. No longer is one resource the decid-

ing factor for overall system behavior. Ideally, processing of speculative requests fills all existing

idle capacities. Schedulers interact in a fully loaded system. All resource schedulers in the OS

must differentiate between regular and idle-time uses. Otherwise, unmodified schedulers will

counteract the scheduling decisions of extended ones.

One example of such a scheduler interaction happens in network scheduling. A CPU scheduler

with support for idle-time use (POSIX) cannot establish idle-time network service with a regular

unmodified network stack, as experiments in the remainder of this section show.

 - 39 -

Two simple CPU-based backgrounding mechanisms available on current systems include running

the idle-time sender at nice or POSIX idle-time priorities. Experimental results show that both

these mechanisms are ineffective in establishing idle-time network service.

4.2.1 Experimental Setup

In the experiments below, two copies of the same benchmark process run in parallel on a single

host. The process is network-bound; it simply tries to send as much pre-generated random data to

a second machine as possible. At the end of the experiment, the process reports the amount of

data successfully sent. One of the two benchmark processes is the regular foreground (FG)

sender, the other one the idle-time background (BG) sender.

As a metric for the effectiveness of support for idle-time use, we compare the throughput of the

FG sender in the presence of a BG sender against the basic case (no BG sender present). Better

mechanisms will yield higher FG throughputs. With an optimal schedule, the FG sender should

reach 100% throughput, and not observe any change in transmission latency.

Each benchmark process uses three TCP or UDP connections to send its traffic, because a single

TCP connection cannot easily overload an isolated network link due to TCP’s congestion control

algorithm. When sending with TCP, the benchmark blocks until one or more connections become

writeable, sends a block of data over and starts over. When using UDP, it sends one message over

each descriptor until the send call fails with an indication that the outbound device queue is full. It

then sleeps for 10ms, and starts over. This emulates the sending behavior of the ping utility in

“flood” mode, and generates enough traffic to saturate the 100Mbps link used in these experi-

ments.

Another variable is the intensity of the FG sender, which controls how large a fraction of its CPU

time quantum a benchmark process spends in the previously described sending loops. For a frac-

tion of 0.1, for example, the process will only try to send traffic for 10% of its allocated time

quantum. On BSD systems, the default quantum is 100ms, meaning the benchmark will generate

send bursts of 10ms before sleeping for 90ms. The BG sender always sends at full intensity to

simulate the worst-case situation for FG senders.

 - 40 -

For each combination of transport protocol (TCP and UDP) and send intensity (full: intensity = 1

and light: intensity = 0.1), the experiment is run for 1 minute. Figure 12 and Figure 13 show mean

normalized FG throughputs (against the throughput of a solitary sender) with 95% confidence in-

tervals over a series of 10 iterations.

The figures below only show FG throughputs, as the performance of BG senders is not critical

(by definition). An optimal backgrounding mechanism would allow FG throughput to reach

100%. Fair OS schedulers that cannot differentiate between FG and BG use would result in a FG

throughput of 50% (the other 50% goes to BG traffic). Finally, under a completely ineffective

backgrounding mechanism, BG traffic could starve FG packets, resulting in 0% FG throughput.

The sending host (running the two load-generators) and receiving host are two identical FreeBSD

4.2-RELEASE machines with 300Mhz Pentium II processors. They are located on an isolated,

switched, full-duplex 100Mbps Ethernet. This setup is network-bound; one machine can satiate

the link with a CPU load of 55%.

4.2.2 Full Foreground Load

In the first experiment, the FG sender sends TCP traffic at full intensity to the receiver. The left

diagram in Figure 12 shows the measured and normalized FG throughput rates together with 95%

confidence intervals (narrow white bars overlaying the wider gray bars). In this scenario, the link

should not have any idle capacity, and no BG transmissions should occur. Achieving a full 100%

throughput in this scenario means a FG was successful in monopolizing the link.

With a BG TCP sender (left bars in the left graph of Figure 12), neither the POSIX nor the nice

backgrounding mechanism can establish idle-time network service. FG throughput reaches only

50%, indicating that some other scheduler is fairly splitting up network capacity between FG and

BG, not the CPU scheduler. An optimal backgrounding mechanism would allow FG throughput to

reach 100% here.

For a UDP BG sender (right bars in left graph of Figure 12), this experiment demonstrates the

worst-case scenario: a BG sender without rate-control can virtually shut down FG service for all

three cases. FG throughputs are around 5% across the board. An effective backgrounding mecha-

nism must adapt to this scenario; both CPU-based schedulers fail to do so.

 - 41 -

The right graph in Figure 12 shows the same experiment, but with a FG UDP sender. Here, the

FG UDP senders achieve 100% throughput when running concurrently with a TCP BG sender

(left bars in the right graph of Figure 12). However, this is not due to effective backgrounding,

since the basic case also achieves 100%. The aggressiveness of an unlimited UDP sender man-

ages to starve concurrent TCP traffic: this case is the inverse of the worst-case scenario discussed

above.

If both the FG and BG sender use UDP (right bars in the right graph in Figure 12), the POSIX

scheduler noticeably outperforms nice (90% throughput versus 50%). This scenario is the only

one where one of the two CPU-based mechanisms is effective in achieving some service dis-

crimination. The reason is that kernel processing for UDP send operations is synchronous (does

not happen during interrupt handling), and CPU schedulers have some indirect control over net-

work scheduling. However, FG performance is around 95% (with some variation) – idle-time use

decreases FG service by about 5% here.

4.2.3 Light Foreground Load

In the second set of experiments, the FG sender is only active for 10% of its time quantum (=

10ms) and thus generates bursty traffic. In this scenario, the network link has idle capacity avail-

able, and BG traffic should be transmitted during its idle times. When a FG sender achieves 100%

throughput in this scenario, it was successful in sending the same amount of as with no BG traffic

present.

TCP BG Sender UDP BG Sender
0

50

100
FG

 T
C

P
T

hr
ou

gh
pu

t [
%

]

POSIX
Nice No

POSIX
Nice No

 TCP BG Sender UDP BG Sender
0

50

100

FG
 U

D
P

T
hr

ou
gh

pu
t [

%
]

POSIX
Nice No

POSIX
Nice No

Figure 12: Normalized mean throughput of a FG sender under unlimited load in the basic case (No) and with two
backgrounding mechanisms (Nice and POSIX), using TCP (left graph) and UDP (right graph) with 95%
confidence intervals.

 - 42 -

When the FG sender uses TCP to transmit its bursts (left graph of Figure 13), the POSIX back-

grounder offers small FG performance improvements (5-10%) over the basic case for both TCP

and UDP BG senders, while the nice mechanism is ineffective. However, FG throughputs only

reach 30% with BG UDP and 70% with BG TCP senders – the presence of BG traffic decreases

FG performance by 30-70%. Clearly, the POSIX scheduler is not an effective backgrounding

mechanism in this scenario.

With a FG UDP sender running concurrently with BG TCP traffic (left bars in the right graph of

Figure 13), none of the backgrounding mechanisms is more effective than the basic case. FG

throughputs still reach about 90%, but this again is due to aggressiveness of the UDP sender im-

plementation, not due to backgrounding mechanisms.

When both the FG and the BG senders use UDP, BG traffic completely starves FG transmissions

in the basic case and with the nice scheduler (right bars in the right graph of Figure 13). The

POSIX scheduler manages to noticeably increase FG throughputs (to 90%), as it did in the UDP

vs. UDP case under full load, described in the previous section. Again, this is due to synchronous

UDP send operations that can be indirectly controlled through CPU priorities.

These results indicate that schedulers without support for idle-time can hinder the effectiveness of

overall idle-time use, even if some of the other schedulers do support it. Thus, all resource sched-

ulers must be extended for global support of idle resources. A previous study [NIEH 1993] has

TCP BG Sender UDP BG Sender
0

50

100
FG

 T
C

P
T

hr
ou

gh
pu

t [
%

]

POSIX
Nice No

POSIX
Nice No

 TCP BG Sender UDP BG Sender
0

50

100

FG
 U

D
P

T
hr

ou
gh

pu
t [

%
]

POSIX
Nice No

POSIX
Nice No

Figure 13: Normalized mean throughput of a bursty FG sender in the basic case (No) and with two backgrounding
mechanisms (Nice and POSIX), using TCP (left graph) and UDP (right graph) with 95% confidence inter-
vals.

 - 43 -

presented similar results for a scenario where raising the CPU priority of a multimedia player did

not produce the intended effect of a smoother stream playback.

4.3 Conventional Network Stack Processing

The experiments in Section 4.2 above have shown that current OS mechanisms (nice and POSIX

scheduling) are not sufficient to establish ITN. This section will analyze the reasons of this failure

by tracing the path of outgoing and incoming data through the BSD network stack, and pinpoint

issues that inhibit ITN. Figure 15 and Figure 16 give a (simplified) view of the flow of execution

inside the network stack during outbound and inbound processing, while Figure 14 shows the

data flow through its various buffers. This analysis forms the basis of the OS modifications dis-

cussed in the next section.

On BSD systems, user-level processing cannot interrupt kernel processing; processing of kernel

events has total priority. Inside the kernel, different events have different interrupt priority levels

(IPLs). Thus, processing of one kernel event (which may have interrupted user-level processing)

send buffer socket send buffer device send queue NIC TX queue

receive buffer socket receive buffer IP receive queue NIC RX queue

w
ire

send buffer device send queue NIC TX queue

receive buffer socket receive buffer IP receive queue NIC RX queue

w
ire

process socket layer network layer hardware

CPU scheduler transport protocol device interrupt link access protocol

Figure 14: Queueing at different layers in the network stack for TCP (top) and UDP (bottom) processing.

 - 44 -

can again be interrupted by a higher-priority event. User-level processing will only proceed after

the kernel has processed both events (and no others occurred). Events at lower levels of the kernel

(e.g. device drivers) have usually higher IPLs than events at higher levels of the kernel.

4.3.1 Outbound Network Processing

All user-level socket output flows through the sosend() function in the kernel down into the

kernel (see Figure 15). Depending on the socket protocol and domain, it then calls the appropriate

transport-layer output function through a dispatch table. For the Internet protocols, those are

udp_output() and tcp_output().

TCP sockets must maintain a copy of the user data so TCP’s recovery algorithm can retransmit

the contents of lost packets. Every socket contains a send buffer (so_snd) for that purpose. If the

send buffer is full, sosend() will block the sending process until the buffer drains. When the

send buffer has enough space available, sosend() appends a copy of the user data to it, and then

calls the transport-layer output function tcp_output(). Inside tcp_output(), the protocol

checks if it may send a segment for the respective connection, according to its congestion control

algorithm and timeout rules. If so, tcp_output() calls the network-layer output function

ip_output(); if not, the system call is complete and process execution continues after the write

system call.

When a process writes on a UDP socket descriptor, sosend() does not buffer any data. UDP as a

simple, unreliable datagram protocol does not offer protection from packet losses. Instead,

sosend() immediately calls the transport-layer function udp_output(), which in turn simply

calls the network-layer output function, ip_output().

 - 45 -

write

(*pru_send)

sosend

udp_output

(*pru_send)

sosend

tdp_output

sbwait

ip_output

(*if_output)

ifq_enqueue

(*if_start)

ifq_dequeue

NIC DMA

NIC IRQ

...

UDP

TCP

so_snd
not fullso_snd full

may not
segment

may
segment

after
sowwakeup

ifq not fullifq full

ifq
not
full

ifq full

Process Socket Layer Transport Protocol Network Layer Device Driver

Figure 15: Network stack outbound processing.

 - 46 -

Network layer processing for both UDP and TCP is identical. At first, ip_output() performs a

route lookup, and then tries to enqueue the data in the device queue of the outgoing interface for

that route. If the device queue is full, ip_output() drops the packet and the write system call is

complete. If ip_output() was successful in enqueueing the packet, it calls the output function

of the outgoing network interface (*if_output). This function, in turn, checks if the hardware is

ready to transmit data, and if so, dequeues a packet from the device queue and starts transmission

(*if_start). If not, it will simply return. After transmission starts, the driver will repeatedly de-

queue and transmit packets until the device queue is empty (or the hardware’s send buffer is full).

It is important to note that the driver code runs at one of the highest interrupt priority levels (most

interrupts are blocked), and so usually cannot be interrupted until the device queue is drained

completely.

4.3.2 Inbound Network Processing

Inbound network stack processing starts with the physical reception of a packet by the network

device (see Figure 16). The device will signal the availability of data to the kernel by issuing a

device interrupt, which is handled by the device driver’s interrupt routine. It copies the data from

the device memory into main memory. The input routine of the driver then enqueues the data into

the correct protocol receive queue. All IP data demultiplexes into the incoming IP queue

(ipintrq) and a software interrupt signals data arrival to the upper half of the kernel. If

ipintrq is full, the driver drops the data. At this point, processing loops back to the driver’s in-

terrupt handler. While more packets are ready to be transferred from the device memory, the

driver will continue to demultiplex and enqueue them for reception by higher-level protocols.

Again, since the driver runs at a high IPL, it will not exit this loop until the device receive buffer

is empty.

 - 47 -

sbwait

tcp_output

NIC
buffer
not
empty

ProcessSocket LayerTransport ProtocolNetwork LayerDevice Driver

sorwakeup

sowwakeup

tcp_input

sowrakeup

udp_input

ifq_dequeue

ipintrq

NETISR_IP

NIC IRQ

NIC DMA

(*if_input)

ifq_enqueue

…

read

soreceive

...

NIC buffer empty

data not present
data

present

after sorwakeup

UDP

TCP

so_snd
empty

so_rcv not
empty

can send
ACK or data

Figure 16: Network stack inbound processing.

 - 48 -

When a software interrupt signaling IP packet reception occurs, the ipintr() handler loops over

all packets in the IP incoming queue and calls ip_input() for each one. That function discards

corrupted packets, dispatches packet forwarding (if needed) and manages fragment reassembly.

For a packet destined for the local host, it calls the transport-layer input routine, based on the

packet’s protocol field. If dequeueing a UDP packet, ip_input() dispatches the packet to

udp_input(), which appends the data to the receive buffer of the corresponding socket, and un-

blocks processes blocked to read data (sorwakeup). When ip_input() dequeues a TCP packet

from ipintrq, it passes it to tcp_input(). As part of TCP protocol processing, tcp_input()

may trigger sending new TCP packets (data and/or ACK) by calling tcp_output(), and wake

up processes waiting to enqueue more data into the send buffer (sowwakeup). Data flows out of

tcp_input() along the same path it does for UDP: the routine copies it into the receiving socket

buffer, and waiting processes are unblocked (sorwakeup).

Whenever a process reads from a socket, soreceive() checks if enough data is present in the

socket receive buffer to satisfy the read request. If so, it copies it to the process buffer and returns.

If not, it blocks execution until the transport layer signals the arrival of more data through

sorwakeup.

4.3.3 Discussion

For a TCP sender, the kernel buffers data in the socket send buffer, which the transport layer

drains according to TCP’s congestion control and timeout rules. The write call succeeds after the

data enters the socket buffer, and the process continues execution. Either timeouts (in-kernel

timer firing) or ACK receptions (device interrupt) trigger TCP packet sends.

Both of these events happen independently from CPU scheduling. The handlers for both events

run at higher IPL than user-level processes, and will thus interrupt process execution. This means

that a process may not even be running when the kernel sends packets on its behalf.

An ITN mechanism based on a modified CPU scheduler (like nice and POSIX) cannot hope to

regulate network transmissions in this feedback system. It only controls which candidate process

can access the socket queues to enqueue or dequeue data, not the timing of the transmission of

that data.

 - 49 -

For a UDP sender, data will usually go directly into the outbound device queue. It may seem that

if the CPU scheduler enforced strict priorities, UDP data sent by a lower-priority process could

never interfere with that of a higher-priority one, because the priority CPU scheduler would never

allow the lower-priority sender to execute.

The experimental results in Section 4.2 demonstrate that while the POSIX scheduler can prioritize

FG traffic to some degree (10% performance decrease), it is only able to do so when both FG and

BG traffic is UDP. Whenever FG TCP traffic competes with BG traffic, it is not effective in pri-

oritizing service.

The reason lies in the way typical UDP senders are implemented: In essence, UDP senders limit

their send rate by blocking for a period of time when the send system call indicates a full device

queue. (If this never happens, the outgoing link speed is higher than the data rate of the sender.) If

the device queue fills up before the time quantum of a process runs out, it will sleep, causing the

CPU to context-switch to another process. Even under the POSIX scheduler, if a higher-priority

process voluntarily sleeps, lower-priority ones may run.

As noted above, the lower half of the kernel runs at IPL asynchronously from scheduled events in

its upper half. This means that when the new process starts its time quantum, the driver has usu-

ally drained some packets from the device send queue and more data can be enqueued. So a BG

sender scheduled when a FG sender starts sleeping (due to a full device queue) can usually send

at least some packets before the queue fills up again, and it in turn sleeps.

Another issue with current OS processing is its focus on data reception: Network interrupt han-

dlers suspend all other processing. Most systems follow an eager receiver model, and give high-

est priority to capture and storage of packets, second highest priority to protocol processing, and

lowest priority to user-space process execution. The rationale is that receive buffer space is lim-

ited, and data must be moved off the device into main memory to prevent data loss due to buffer

overruns.

Without hardware support, arriving idle-time data can interfere with any regular processing, be-

cause the system must first complete the reception before it can determine if it is regular or idle-

time data, and drop or process it accordingly. In the worst case, a flood of idle-time data can drive

a system into receive livelock [DRUSCHEL 1996][MOGUL 1997], where the system is loaded with

 - 50 -

handling packet reception such that no other processing can occur. Again, this problem is worse

for drivers that start scheduling additional requests (if present in the work queue), instead of re-

linquishing control.

Hardware support could allow the network interface to filter out the unwanted requests, and

eliminate interrupt processing. However, hardware support and prioritized interrupts are major

changes to current systems. Other techniques may offer some of their obtainable benefits with

fewer modifications to the UNIX architecture. Lazy receiver processing (LRP) [DRUSCHEL 1996],

for example, is a modification to the UNIX network stack. It charges resource use for network

processing to the appropriate process, discards excess data early, and schedules (most) processing

of inbound traffic at the process priority of the receiver. The basic idea is to minimize interrupt-

level processing, instead of executing all link-, network-, and transport-layer processing on each

packet reception. A host with support for LRP simply demultiplexes the packet stream (into per-

socket work queues) at the driver level during interrupt processing. All higher-level receive proc-

essing is scheduled lazily, when the process issues the corresponding system call.

LRP (or a similar scheme) could benefit idle-time networking, by reducing the impact that BG

packet receptions have on concurrent FG processing.

4.4 OS Extensions for Idle-Time Networking

The key issue with the two CPU-scheduler-based candidate mechanisms to implement ITN is the

event-driven nature of kernel network processing. Nearly all network routines – with the notable

exception of UDP sends – happen asynchronously with user mode execution: device interrupts

trigger packet transmissions and receptions. Packet receptions trigger incoming transport protocol

processing, which in turn may unblock processes waiting for data reception on a socket. For TCP,

packet receptions (and to a lesser degree, kernel timeouts) trigger packet sends. In a sense, the

network stack is an event-based system, where event priorities are equivalents to the IPL of the

corresponding handlers. As demonstrated by the experimental results in Section 4.2, the previ-

ously examined CPU-scheduler backgrounding mechanisms have only very limited impact in

such a system. A second issue is the use of FIFOs for all kernel queues. The processing order of a

FIFO queue is identical to the enqueue order, which may cause a queue's consumers to process

 - 51 -

earlier arriving BG data before FG (e.g. a FIFO device queue may send BG data before FG data,

because it was enqueued earlier). This must not occur in a system supporting ITN.

4.4.1 Design Goals

The network stack is a complicated system, and many applications rely on its API (socket inter-

face) and service semantics. Therefore, it is important to avoid fundamental changes to the net-

work stack. Additionally, much effort went into designing and fine-tuning the Internet’s transport

protocols. OS extensions for ITN must not modify these transport protocols, to avoid incompati-

bilities with current standards. It is also impractical to change all network drivers to support ITN,

so hardware-dependent driver code must not change for ITN extensions. Note that part of the

driver code is common to all devices of the same family; these routines could be safe to modify.

In addition, for end-to-end ITN, routers in the network must distinguish between FG and BG

packets, as described above. The focus of this chapter lies thus on host extensions; it assumes

network support for ITN is available and the network handles packets according to their service

marks.

In summary, a design for OS extensions for ITN must be a simple extension of the current socket

layer, must not modify the transport layer, and must not require changes to the hardware-

dependent parts of device drivers – consequently, they must mainly extend the network layer.

4.4.2 Design

One issue identified earlier in this section was the use of FIFOs for all queues in the network

stack. To support ITN, two-level priority queues must replace most FIFOs in the network stack.

Part of the KAME IPv6/IPsec package [JINMEI 1998] for BSD is the ALTQ framework [CHO

1998] of alternate queueing disciplines. ALTQ replaces the outgoing standard FIFO queues of de-

vice drivers with configurable queueing disciplines, including priority queues. We have extended

ALTQ to the inbound protocol queues (mostly ipintrq) and to drop lower-priority packets for

higher-priority ones when the queue is full. ALTQ filters put marked packets into a lower-priority

traffic class, for both outgoing device and incoming protocol queues.

The service level of the network stack must not decrease for ITN-unaware applications – the ker-

nel must not send their packets as BG by default. Only ITN-aware applications may use the new

 - 52 -

service class, by explicitly indicating this to the kernel. The socket layer offers socket options to

set user-configurable options on a per-descriptor basis. Thus, the only socket-layer change needed

is a new socket option (SO_BACKGROUND) that indicates that the network stack should treat all

traffic from or to a socket as low-priority BG traffic. Note that this scheme is the inverse of other

proposals for packet marking that use marks to increase the service level (e.g., expedited forward-

ing). Without proper policing mechanisms, these schemes become problematic – nothing keeps

processes from marking all their packets as high-priority, and thus receiving better than best-

effort service. The proposed marking scheme for ITN avoids these complications by only allow-

ing applications to lower their service level.

Because of the event-based nature of the lower half of the kernel, drivers will transmit packets as

soon as they enter their device queue (a transmitter activation follows each enqueue operation).

Because the driver code executes at a higher IPL than the network layer, it typically sends the

packet before another one can be enqueued. Consequently, the network layer must verify if BG

packets may be sent at a particular time before it enqueues them into the device queue. The key

idea is that the host should never send BG packets to any destinations when a FG sender is using

the same outgoing interface. Instead, the network layer should drop these BG packets, signaling

an out-of-buffers (ENOBUFS) error condition. UDP senders must already be prepared to handle

this error condition (it occurs when the device queue fills up), and TCP will take the packet drop

as an indication of congestion and lower the rate of the BG sender.

There are several possible methods to determine if an interface is in use by a FG process before

enqueueing a BG packet into a device queue. The simplest one is to check if a FG protocol con-

trol block (PCB) exists that uses the same outgoing interface. While this simple approach is effec-

tive, it is also too restrictive: A single FG TCP connection prohibits any BG traffic from being

sent – even when it is idle. A more effective identifier of active senders would not only check for

the presence of a PCB for an outgoing interface, but also use additional means to determine if the

PCB is an active user of the interface. For example, it could check if the corresponding socket

had any queued data in its send buffer, which would indicate an active sender. The prototype im-

plementation evaluated in the next section uses this technique.

Active UDP senders are more difficult to identify. Unlike TCP, UDP does not buffer any data at

the socket layer (all UDP socket send buffers are always empty), so the check described for TCP

 - 53 -

in the previous paragraph is not effective. Furthermore, UDP writes are non-blocking; they either

succeed in enqueueing data into the device queue or fail and return to the user process with an er-

ror code. No kernel state exists that allows determining precisely if a UDP sender is active or not

at any given time. The current design for ITN thus uses the following heuristic to check for active

UDP senders: For each UDP PCB, the network layer will check if the corresponding process is

sleeping or not. A sleeping process indicates (paradoxically) an active UDP sender. This heuristic

depends on the common structure of implementing UDP clients, which send until they fill the de-

vice queue or run out of data, then sleep to enforce a send rate limit. (See the next section.)

The design for ITN in this section is clearly a proof-of-concept, and practical reasons argued for

minimal modifications to the current network stack. A completely redesigned network stack with

support for ITN from the ground up would be an equally possible solution, but the extent of such

an effort is outside the scope of this project.

Several performance issues exist with the current design. One is that the decision to enforce ITN

at the network level causes BG packets to go through socket and transport layer processing, only

to be dropped when FG senders use the same outgoing interface. Enforcing ITN at a higher layer

would not incur this performance hit. For more compute-intensive future transport protocols (e.g.

encrypted or tunneled flows), this may prove problematic. A second performance issue is the per-

BG-packet overhead of looking up the PCB for a packet and determining if FG senders (PCBs)

exist for the same interface. The current implementation adds list of users (pointers to PCBs) to

each interface to limit the impact of this search. Schemes that are more complex may further

mitigate this overhead, but are outside the scope of the initial implementation.

Detecting active UDP senders (to protect FG UDP traffic from BG interference) at the network

layer is difficult, due to lack of information. The kernel can gain information about TCP connec-

tions and their corresponding processes from internal state. For UDP senders, no such state exists

at the kernel level; UDP senders manage it inside the application. One future possibility could be

to extend UDP to utilize to queue data at socket send buffer, and to drain it as the interface queue

empties. This would allow the TCP technique to check for active senders to extend to UDP send-

ers.

 - 54 -

4.5 Experimental Evaluation

To evaluate the effectiveness of the ITN mechanism designed in the previous section, we repeat

earlier experiments (see Section 4.2) with the new ITN backgrounding technique. The experimen-

tal setup is unchanged, except that the BG senders are now using the new network ITN

backgrounding method.

4.5.1 Full Foreground Load

The left graph in Figure 17 shows how a fully loaded TCP FG sender behaves under BG load

generated by TCP or UDP senders that use the ITN backgrounder. In both cases, FG throughput

reaches about 99% of the maximum. An optimal backgrounding mechanism would achieve the

full 100%; the proposed ITN mechanism gets very close.

The right graph of Figure 17 displays the result for a UDP FG sender. Again, FG throughput un-

der full load reaches 97-99% for both UDP and TCP BG traffic. With TCP BG traffic, this is no

improvement over the basic case, because the aggressive UDP FG traffic can already monopolize

the link. In fact, throughput is 1-2% lower, maybe due to processing overhead of the ITN mecha-

nism. With a UDP BG sender, however, the ITN mechanism is again very effective, increasing

FG throughput to 99%.

Under all these full-load scenarios, the ITN backgrounder is effective in isolating the FG traffic

from the presence of any BG traffic in the system.

TCP BG Sender UDP BG Sender
0

50

100
F

G
 T

C
P

 T
hr

ou
gh

pu
t [

%
]

IT
N No

IT
N No

 TCP BG Sender UDP BG Sender
0

50

100

F
G

 U
D

P
 T

hr
ou

gh
pu

t [
%

]

IT
N No

IT
N No

Figure 17: Normalized mean throughput of a FG sender under unlimited load in the basic case (No) and with the ITN
backgrounding mechanism, using TCP (left graph) and UDP (right graph) with 95% confidence intervals.

 - 55 -

4.5.2 Light Foreground Load

The next set of experiments looks at the performance of a bursty FG sender using the ITN back-

grounder. For a TCP FG sender (left graph in Figure 18), the new mechanism improves FG

throughput between 35-80% to 99% total for both TCP and UDP BG traffic. Thus, it effectively

isolates FG traffic from the presence of BG senders.

For a UDP FG sender (right graph in Figure 18), the ITN backgrounding method also increases

throughput to 99% for both TCP and UDB BG traffic. With a TCP BG sender, this is a minor im-

provement of 5% over the basic case. Again, this is because the UDP sender is already aggressive

enough to reach high throughput. With a BG UDP sender, the performance increase is around

90% – bursty FG UDP traffic was almost denied service in the basic case, now its performance is

close to optimal.

4.5.3 Discussion

The experimental results presented in this section show that the proposed ITN extensions are ef-

fective in isolating FG traffic from the presence of BG traffic. In all the investigated scenarios,

FG performance reaches 97-99% of the basic case (where no BG traffic is present), effectively

isolating FG packets from the presence of BG traffic. While the benchmark framework used for

these experiments is flexible, the current load-generating processes are very simple. This was a

deliberate choice, to factor out secondary system interactions from the results. Future experiments

TCP BG Sender UDP BG Sender
0

50

100
F

G
 T

C
P

 T
hr

ou
gh

pu
t [

%
]

IT
N No

IT
N No

 TCP BG Sender UDP BG Sender
0

50

100

F
G

 U
D

P
 T

hr
ou

gh
pu

t [
%

]

IT
N No

IT
N No

Figure 18: Normalized mean throughput of a bursty FG sender in the basic case (No) and with the ITN backgrounding
mechanism, using TCP (left graph) and UDP (right graph) with 95% confidence intervals.

 - 56 -

should investigate the behavior of the ITN backgrounder under real workloads, such as support-

ing a web server with FG and BG service classes.

Another shortcoming of these experiments is that they only measured FG throughput, not latency.

For full isolation, not only must FG senders reach the same throughput they would in the absence

of BG traffic, they also should not see any increase in transmission latency. Future experiments

should investigate this further.

As mentioned above, the benchmark processes used during the experiments throughout this paper

are deliberately simple. The next set of experiments should investigate the behavior of the current

ITN design under a realistic workload, such as supporting a web server with FG and BG service

classes. Another interesting set of experiments would compare the packet-scale send behavior of

an ITN-enabled host with BG traffic against a basic one without (under the same workload) to in-

vestigate how close to the ideal behavior the current mechanisms are.

 - 57 -

5 Related Work
Related work falls into two broad categories: First, systems that prioritize resource use, such as

hard and soft real-time systems. The second category comprises of various speculative tech-

niques, such as prefetching and caching, or remote execution systems. The remainder of this sec-

tion contrasts these systems with this proposal.

5.1 Real-Time Systems

Correctness of the computation in a real-time system not only depends on its logical correctness,

but also on the time at which results are produced. Missing the timing constraints (deadlines) of

the computation results in a critical failure.

The system defined above is commonly referred to as a hard real-time system, where missed

deadlines are equivalent to a total system failure. Soft real-time systems relax the latter restriction:

Missed deadlines are undesirable, but not catastrophic. In both cases, construction of a schedule

such that all tasks meet their deadlines is critically important. The spectrum of existing real-time

systems – from hard real-time to soft “multimedia” real-time – is vast.

5.1.1 Examples

The Spring Kernel [STANKOVIC 1991] supports real-time execution on multiprocessor machines,

guaranteeing absolute predictability based on worst-case execution times. One processor of the

system is dedicated to execution of the system kernel; the rest is available to execute user proc-

esses. One unique feature of Spring is its planning-based approach to resource scheduling, which

eliminates blocking from the system, but depends on detailed description of the resource use of

all application programs. Spring offers predictable memory accesses by preloading and locking

physical pages, and by saving and restoring the translation look-aside buffer during context

switches (a related technique is also effective for traditional systems [BALA 1994]).

Nemesis [LESLIE 1996] is a vertically structured OS, where a microkernel implements only mini-

mal task switching functionality. Shared libraries provide the bulk of in-kernel services offered by

a traditional OS at the application level. Thus, most processing on behalf of user processes is sub-

ject to scheduling by the microkernel, and is correctly charged to the processes on whose behalf it

 - 58 -

occurs. Unlike Spring, Nemesis does not support hard real-time processes, and processes are not

required to specify their resource requirements in advance. Instead, it focuses on providing a con-

sistent quality-of-service environment for multimedia (soft real-time) applications through a QoS

manager. It notifies applications of changes to the service allocation, and expects them to adapt.

Among other things, it signals to applications whether an increase in their resource share is due to

a (temporary) increase in idle capacity, or to an actual change in the service allocation. Thus,

Nemesis supports some notion of processing with idle capacity.

Eclipse/BSD [BRUNO 1998][BRUNO 1999] is similar to Nemesis in that it focuses on providing

soft real-time service targeted at multimedia applications. Unlike the former, it requires explicit

resource reservations through hierarchical CPU, disk, and network schedulers. Real-Time Mach

[TOKUDA 1990] is a microkernel-based OS similar to Eclipse/BSD, but with support for hard real-

time processes. Again, applications explicitly notify the system of their resource requirements

through reservations.

AQUA [LAKSHMAN 1998] is a kernel-level framework that allows cooperating processes to dy-

namically negotiate their CPU and network requirements with the kernel. If a resource becomes

congested, AQUA notifies affected processes to allow service adaptation. Omega [NAHRSTEDT

1996] is an end system framework that supports soft real-time scheduling of CPU, memory, and

network I/O to provide end-to-end quality-of-service. Omega is similar to AQUA; processes dy-

namically negotiate their resource requirements with the system.

Scout [MOSBERGER 1996] is a communication-oriented OS based on the abstraction of data paths.

Scout allocates threads to active paths according to a variety of schedulers, to vary the service

model of the system. Idle-time execution in Scout would require the addition of idle-time paths

combined with a thread scheduler supporting two service classes.

5.1.2 Discussion

All the real-time systems mentioned in the previous section differ in one or more of the following

key characteristics from a traditional, general-purpose OS: predictability, resource requirement

specifications, and admission control.

 - 59 -

One key difference is predictability, which requires time bounds on all resource operations and

scheduling overheads. Without such bounds, processing deadline guarantees are impossible. Nar-

row bounds are desirable for higher system utilization. Defining time bounds on operations is dif-

ficult and usually hardware dependent – for example, the maximum time of a disk read operation

depends on the disk drive model.

Predictability is not required for non-interfering idle-time use as proposed here, although it might

lower some preemption costs. With a known service time for a request, a scheduler may let an

idle-time request finish instead of preempting it when a regular request arrives. If the time-to fin-

ish of the idle-time request is less than the preemption cost, this might decrease interference with

regular use.

A second difference between regular and real-time systems is resource requirement specifications.

Processes must disclose their future resource use to the system. In the basic case of a dedicated

system, a programmer statically verifies that the system can satisfy all resource requirements of

the various processes, and compiles a fixed schedule controlling resource use. Naturally, such a

system will not support dynamic process creation, and is too limited for general-purpose use.

More advanced real-time systems allow processes to explicitly disclose their planned resource use

and deadlines at run-time, and can automatically generate resource schedules based on these res-

ervations. In both cases (explicit or automatic schedule generation), the workload of the system

must be periodic. The resource requirements of dynamic workloads are difficult to predict, and

their worst-case resource use may be unbounded.

For this proposal, resource requirement specifications are not required for regular processes. If

speculative tasks choose to specify their resource requirements, the system could optimize specu-

lation by not allocating any idle-time capacity to tasks that require capacity on a resource that is

fully loaded. However, this is an optional optimization of the speculation mechanism, and not a

required condition.

When a new real-time process is created, the system verifies its execution feasibility dynamically,

and rejects the process if execution would over-commit its resources. This admission control is

the third key component of a real-time system. A general-purpose OS does not need to perform

this operation, because is neither offers resource reservations nor fixed deadlines. Dedicated real-

 - 60 -

time systems do not require admission control, because their workloads are static, with externally

proven deadline guarantees.

With resource requirement specifications, more advanced systems can automatically generate

schedules for periodic workloads. Such schedules require prioritized resource access. This aspect

of real-time systems is very similar to the current proposal, which also requires resource prioriti-

zation: Many of the prioritized schedulers proposed for real-time systems can implement idle-

time use for a given resource. However, the key difference is that real-time systems give preferen-

tial treatment to some resource requests, to meet specified or implied service goals.

The current proposal, on the other hand, is the inverse: Some resource requests receive less-than-

default service. It is simple to convert a mechanism for the former into one for the latter (raise the

default priority, use explicit notification to lower it) for a single resource. Thus, priority schedul-

ers for real-time systems can implement idle-time use for a single temporally-shared resource.

However, prioritization is not sufficient to establish non-interfering idle-time use; preemptability

and isolation are also required, both of which real-time systems do not provide. It is, for example,

acceptable for an RTOS to continue processing a lower-priority request when a higher-priority

one arrives, as long as it misses no deadlines. It may in fact be advantageous to avoid preemption,

to increase resource utilization. Isolation is a concept that has no equivalent in an RTOS; side ef-

fects of execution at different priorities are always globally visible.

Furthermore, real-time systems focus on scheduling temporally-shared resources. Idle-capacity

use of spatially-shared resources is a key requirement of this proposal that an RTOS does not ad-

dress.

Thus, while an RTOS can offer one requirement for speculative idle-capacity use (prioritization),

two others are unsupported (preemptability and isolation). Furthermore, real-time execution re-

quires predictability, resource requirement specification and admission control, all of which are

unnecessary for idle-time resource use.

 - 61 -

5.2 Speculative Uses of Idle Capacity

A wide variety of systems tries to use idle capacity speculatively. This section discusses three ar-

eas in which such uses of idle-times are common: prefetching and caching, optimization and

maintenance tasks, and idle-time processing.

5.2.1 Prefetching and Caching

The storage facilities of a system form a hierarchy according to their access times and transfer

speeds. Prefetching is a technique to retrieve a data item before access (hiding the access time).

Caching is a related technique to replicate data in unused capacity at a higher level in the storage

hierarchy. Prefetching requires caching to store the prefetched items, while caching is effective

without prefetching, by simply replicating recently used data in faster storage.

Prefetching and caching are important techniques to speed up execution. The goal is to interleave

I/O activity with computation, and to prefetch data prior to use, hiding I/O latency. Several pro-

posals focus on prefetching, using different compile-time, run-time, and speculative techniques.

One approach uses idle CPU cycles while a process is blocked to speculatively continue execu-

tion of a shadow copy of the same process, to generate prefetching hints to speed up future I/O

[CHANG 1999]. The shadow copy executes in a sandbox environment that prevents side effects to

become visible to the original process. The authors claim 30-70% reductions in execution times

for various benchmarks.

Another approach for out-of-core computations (where large datasets must reside on secondary

storage) uses compiler techniques to automatically insert prefetch instructions into the application

code [MOWRY 1996]. Experiments show that the technique is successful in hiding between 50-

98% of the I/O latency, speeding up execution by a factor of 2-3. Similar techniques are also ef-

fective for memory cache prefetches [MOWRY 1998][OZAWA 1995].

Finally, another mechanism allows applications to disclose future disk accesses to the OS explic-

itly by passing hints [PATTERSON 1995]. The authors report a performance increase of up to 42%

for some applications.

 - 62 -

All three approaches strive to identify idle resource times to schedule their prefetches. The first

system does so automatically, by running the hint generator when the process is blocked. How-

ever, due to the absence of prioritized resource access, the hint generator, as well as the prefetches

can still interfere with CPU and disk use by other processes. The last two systems are even more

limited, because they rely on application-level strategies to identify idle times. The mechanisms

presented in this proposal could improve and simplify all these systems, by shielding regular re-

source use from the presence of the prefetches, as well as caching speculative data in idle storage

capacity.

5.2.1.1 Effects on System Caches

Most operating systems contain caches at many levels in the processing hierarchy (memory

cache, disk buffer, ARP, HTTP, etc). Speculative operations can modify cache contents, affecting

regular performance. The disk block hint generator described above [CHANG 1999] is a system

that explicitly tries to pre-load the disk cache with useful data, to increase performance.

However, performance decreases due to speculative uses can also occur. One study reports a de-

crease in regular performance when memory pages are speculatively cleared. Most operating sys-

tems clear memory pages before they allocate them to processes, to prevent security holes. How-

ever, page-clearing at allocation time severely affects performance. Clearing pages in the kernel’s

idle loop, so that pre-cleared pages are available at allocation time [DOUGAN 1999], may alleviate

this problem. However, the authors report that memory cache pollution due to page-clearing lim-

ited the overall performance gain: Useful application-related state was flushed to cache page-

clearing state, and application performance thus decreases (even though page allocations were

faster). The obvious fix is to disable cache replacement during the idle time operation. While this

decreases the performance of the page-clearer, it retains application state in the cache, and thus

improves performance.

Other studies, however, find that leaving caches enabled during speculative execution can have a

beneficial effect on overall performance, due to a pre-load effect. One such example is the pre-

fetchers discussed above, which pre-load the disk cache with useful information. Another study

investigates the memory cache behavior of a processor with support for multithreading [KWAK

1999], and finds that hit rates increase for related threads that exhibit locality-of-reference, while

they decrease for unrelated threads. A third study monitors the execution behavior of specula-

 - 63 -

tively executing processes [PIERCE 1994]. The authors report that while data references increase

with speculative execution, data misses increase only moderately; and the prefetch effect more

than offsets the performance impact, resulting in improved performance overall.

With extensive idle-time use of resources, as proposed in this paper, cache pollution is a major is-

sue. To guarantee isolation, extensions to suspend cache replacements may be required for many

of the system caches.

5.2.2 Optimization and Maintenance

Most operating systems regularly perform optimization and maintenance operations, to detect

system problems and improve performance. Many of these operations are lengthy and not critical,

and several proposed techniques try to schedule them during idle times. Examples of such tasks

include disk block replication [AKYUREK 1995], speculative disk arm movement [KING

1990][MUMOLO 1999], prefetching and caching file system meta-data [MOLANO 1998] and file

system consistency checking and reorganization [MCKUSICK 1999][MATTHEWS 1997]. Section

3.1.2 above discussed these in more detail.

Some network-related techniques to improve performance, like web prefetching [PADMANABHAN

1996], are similar to the disk ones. Unlike using local resources, network transmissions usually

require an expensive connection setup. Thus, caching and pre-warming of connections [COHEN

2000], PMTU probing and IPsec key negotiations are techniques that do not apply to local re-

sources. Speculative execution of these phases can hide much of the latency associated with con-

nection setup. Section 3.1.1 above presented these in more detail.

Again, all these techniques could execute speculatively using idle resources, instead of heuristi-

cally limiting them in the hopes of minimizing their impact on regular processing.

5.2.3 Idle-Time Execution

All the previous techniques used idle local resources speculatively. Several other systems try to

use idle remote resources for productive work. One category of such systems is process migration

systems (cycle harvesters), which push local processes to idle remote machines for faster execu-

 - 64 -

tion. Another category is data migration systems, which push data to remote machines that exe-

cute a common process.

One major difference to this proposal is that these systems concentrate on detecting remote avail-

ability and then utilizing idle capacity for a single resource only; other resources are only used as

an implicit side effect. The proposed system, on the other hand, strives to utilize idle times of all

resources independently of one another.

Another difference is that these systems do not prioritize between idle-time and regular process-

ing. Thus, they treat idleness as a system-wide Boolean condition, while the proposed system

supports utilization of partially idle resources. While many systems (especially real-time systems,

see Section 5.1 above) support high-priority resource access, few others offer the notion of idle-

time background use. One of the few that does is a hierarchical CPU scheduler, where arbitrary

threads can act as schedulers for other threads by donating part of their allocated CPU time [FORD

1996]. One such scheduler explicitly supports background CPU use, similar to the POSIX idle-

time scheduler [POSIX 1993].

5.2.3.1 Process Migration

Cycle harvesters schedule computations on a network of workstations, hoping to exploit idle re-

mote resources to speed up local jobs. Historically, they have focused on utilizing remote CPU

cycles (hence the name) and only utilized other remote resources indirectly. Cycle harvesting is

especially effective for parallelizable jobs that can utilize multiple remote machines at once.

However, even sequential jobs can benefit from remote idle-time execution, where they do not

have to compete for resources with other active processes.

The Sprite System [DOUGLIS 1991], Condor [LIZTKOW 1988], Batrun [TANDIARY 1996], DAWGS

[CLARK 1992] and the V System [THEIMER 1985] are cycle harvesters that support process re-

migration, when a remote host under idle-time use becomes unavailable. Butler [NICHOLS 1987],

a component of the Andrew system, is a transparent remote process execution facility that does

not provide process migration, but simply terminates remote processes when a remote machine

becomes unavailable.

 - 65 -

While cycle harvesters are similar in spirit to speculative idle-time use proposed here – both ap-

proaches aim at reclaiming wasted capacity for useful work – several key differences exist. Cycle

harvesters are often application-level or middleware solutions running on top of a conventional

OS without prioritized processing. Most of their shortcomings, such as migration overhead and

idle-time detection, are artifacts of that design.

Without prioritized resource use, cycle harvesters cannot effectively utilize machines with par-

tially idle resources (bursty local workloads). Since migrated processes run at the same priority as

regular ones on the remote machine, any migrated process can severely decrease regular perform-

ance on a remote machine. Thus, most harvesters only reclaim cycles from remote machines that

are fully idle. The system presented in this proposal, however, supports prioritization and pre-

emptability, and can utilize partial idle capacity.

Another consequence of the lack of prioritization is high migration costs. Whenever a remote

machine becomes unavailable for idle-time use, all remote processes on it must be re-migrated or

terminated. Re-migration is a costly operation and will decrease regular performance of the re-

mote machine during the migration period. Terminations are faster but still not instant, because

the system must roll back to invalidate local state created by the terminated remote process. Addi-

tionally, partial work completed by terminated processes is lost.

With process migration systems, the finest-grained operation corresponds to the migration of a

remote process. In the proposed system, on the other hand, an operation is a single resource re-

quest (e.g. sending a packet, reading a disk block). Thus, the overhead of aborting idle-time use in

the proposed system is smaller, because the granularity of operations on the idle resource is finer-

grained (e.g. wait for disk read to finish vs. re-migrating an entire process).

High migration costs further reduce the chance for utilizing idle resources: For bursty remote

workloads with short idle-times, a cycle harvester could enter a state of thrashing, where all idle

periods are spent migrating process to and from the machine, and no forward progress was made.

Because the exact distribution of remote idle times is usually unknown, most cycle harvesters

employ coarse heuristics and/or predictors [WYCKOFF 1998][GOLDING 1995] to find likely long

idle periods. These techniques are effective in utilizing long, periodic idle periods (e.g. night

hours), but fail to detect shorter, transient idle times due to quantization. They can thus fail to util-

ize some existing idle capacities of their target resource. The proposed system does not require

 - 66 -

such heuristics, since prioritization inherently establishes different service levels, and can utilize

all present idle capacities (of all resources).

5.2.3.2 Data Migration

Unlike cycle harvesters, which push both code and data to an idle remote machine for execution,

data migration systems only move data to idle peers for processing or storage. All remote ma-

chines participating in such a distributed system already run a copy of the same client process.

Process migration systems offer more flexibility in remote idle-capacity processing, but data mi-

gration systems are simpler, can be platform-independent and have smaller preemption costs.

One popular subclass of such systems are application-level clients for distributed computation

projects, such as cryptographic code breaking or searching for large prime numbers [HAYES 1998]

– or even extraterrestrial life [KORPELA 2001]. In these systems, all participants run the same cli-

ent, and servers only migrate replicas of the data to be processed.

Other systems use unused remote memory as secondary storage, instead of a local disk [MINNICH

1989][FEELEY 1995][KOUSSIH 1999][MARKATOS 1996][NARTEN 1992]. This can improve

performance, because access times for remote memory over a local area network can be an order

of magnitude lower than access times for local disk space.

As with process migration systems, the idle-time mechanisms proposed in this paper can improve

data migration systems by processing migrated data and communicating with remote peers during

idle time.

5.2.3.3 Speculative Execution in Hardware

The proposed idea of using idle system resources speculatively is similar to some features found

on modern microprocessors. A CPU with a superscalar architecture has multiple execution units;

allowing it to execute multiple instructions per clock tick, further increasing performance. How-

ever, it cannot provide unlimited speedups, because speculation requires a continuous instruction

stream. Conditional branch instructions and indirect jumps create problems for these systems,

since they introduce ambiguities into the instruction stream that cannot be resolved until after the

branch instruction has executed. Thus, execution units may remain idle until the CPU determines

whether or not to follow a branch.

 - 67 -

Instead, modern CPUs will use speculative execution to process likely future instructions. When

the memory bus and some execution units are idle, the processor will speculatively prefetch, de-

code and execute likely future instructions.

Speculatively execution of instructions never decreases the execution speed of non-speculative

processing, due to prioritized, preempted CPU resources (bus bandwidth, execution units). The

CPU gives total priority to non-speculative instructions and immediately preempts any specula-

tive processing for non-speculative execution. Hardware mechanisms eliminate preemption cost.

Furthermore, all side effects of a completed speculative instruction remain hidden until the proc-

essor can verify the prediction. For correctly predicted instructions, side effects become visible,

while the CPU discards them for mispredictions. CPUs have hardware mechanisms to efficiently

manage speculative state, and discard or commit operations do not delay regular processing.

Prioritized, preempted resource use, together with isolation of speculative side effects result in a

worst-case performance that is identical to a CPU without speculation, even with constant mis-

predictions. For correct predictions, however, processor performance is improved. Because they

implement the same three principles as the proposed system, CPUs with speculative execution are

most closely related to it.

Processors designs supporting simultaneous multi-threading (SMT) interleave execution of in-

structions of multiple threads, to increase processor utilization compared to more traditional

schemes that only exploit instruction-level parallelism (ILP). One speculative technique for SMT

processors uses idle thread contexts to execute the less-likely branch of a predicted fork

[WALLACE 1998]. The authors report a 14-23% average speedup for single program performance

on an SMT with eight thread contexts, for programs with a high branch misprediction rate. These

results may indicate that sharing idle-time capacity among multiple speculative tasks may also in-

crease performance for the proposed system.

The Address Resolution Buffer (ARB) [FRANKLIN 1996] and the related decentralized Speculative

Versioning Cache (SVC) [GOPAL 1998] allow reordering memory-referencing instructions, to bet-

ter exploit instruction-level parallelism. Traditional processors enforce a total order between

memory references, while the ARB enforces total order only among references to the same ad-

dress. The ARB also supports speculative loads/stores, dynamically unresolved loads/stores and

 - 68 -

memory renaming. The latter capabilities are similar to techniques required to support idle-

capacity use of storage resources.

5.2.3.4 Speculative Execution in Software

Speculative execution has also been a part of some software systems, such as compilers or inter-

preters for programming languages. One example is a mechanism that speculatively interprets

program branches in the BaLinda Lisp dialect, and assigns resources to speculative threads pro-

portional to their relative likelihood [YEE 1993].

A related compile-time technique speculatively executes some method calls of Java programs us-

ing idle multiprocessor capacity [CHEN 1998]. For such methods, a speculative thread continues

execution after the method's return point, using a predicted result value. The mechanism relies in

part on properties of the Java virtual machine to shield threads from one another. The authors re-

port significant speedups (up to a factor of 3) for data-parallel applications; only minor gains for

control-flow-dependent programs.

Speculative execution has also been proposed in the area of information agents [BARISH 2000]

and decision flow optimization [HULL 2000]. These approaches focus on generating good sub-

tasks for speculative execution, but do not address the issue of executing them with idle capaci-

ties. This proposal, on the other hand, focuses on the OS extensions required for non-interfering

idle-time use, but does not address generation of speculative subtasks. In that respect, the two

mechanisms complement one another.

 - 69 -

6 Plan
Chapter 2 introduced a model for speculative use of idle resource capacity, and identified prioriti-

zation, preemptability and isolation as the three key principles to establish non-interfering specu-

lation. Without them, speculative idle-time use will interfere with regular use of resources. Based

on the model, Chapter 4 presented a proof-of-concept design of idle-time extensions for the BSD

network stack, and presented experimental evidence that the current mechanisms shield regular

use from the presence of idle-time traffic in the system to within 1-2%.

The current proof-of-concept implementation supports prioritization and preemptability for the

CPU scheduler (based on POSIX priority classes) and network I/O. Extensions for non-

interfering idle-time use for other resources (notably disk I/O and storage capacity, and memory

capacity) are not part of the implementation yet. The current mechanisms control inter-resource

interference between the CPU and network stack, but may need extensions once idle-time support

for other resources exists. In addition, isolation of speculative side effects does not exist yet, and

integrated scheduling to optimize speculation is thus not yet available.

The remainder of this thesis research will address these limitations, by extending the current idle-

time mechanisms to support idle-time use of the network file system (NFS). NFS [SANDBERG

1985] is a distributed file system that allows hosts to seamlessly mount part of a remote file sys-

tem and present it as if it were part of the local file system. This allows transparent remote file ac-

cess; processes are unaware of the physical location of the data they access. Idle-time NFS is a

combination of idle-time mechanisms for the local disk and file system (at the server), and idle-

Start IT NFS
IT

CPU

IT
Network

IT
Disk I/O

IT
Disk

Capacity
State

Virtualization
Inter-Resource

Interference

you are here

Figure 19: Phases of idle-time (IT) NFS implementation.

 - 70 -

time networking mechanisms to speculatively access remote data.

Other methods for remote data access (e.g. FTP, web) were considered as candidate applications

to extend and verify the idle-time model presented here. Idle-time NFS is a more interesting ex-

ample compared to those others protocols: NFS as a file system supports a much wider variety of

operations (read, write, seek, etc.) compared to FTP and web transactions, which are mostly read-

only data retrievals. Tighter integration with the kernel offers a higher chance of interference with

regular use – compared to the application-level candidates – and thus a better test case.

Support for idle-time NFS requires extensions to the current mechanisms that address its current

limitations, and will thus verify the applicability of the idle-time model presented in this proposal:

• Server-side support for idle-time NFS requires new techniques for prioritized, preempted

disk I/O and storage.

• Virtualization of OS state to establish isolation should be investigated, to prevent specu-

lation from interfering with regular use.

• Inter-resource interference of the new idle-time disk service and the existing network and

CPU extensions must be prevented, verifying the applicability of the current model.

• Idle-time NFS requires idle CPU, network and disk capacities and is thus a scenario to

investigate mechanisms for integrated scheduling.

• Extensions of the idle-time model to support virtualized or stateful resources are required.

 - 71 -

Figure 19 illustrates the planned research towards idle-time (IT) NFS, and indicates the current

state of the mechanisms.

One part of the experimental evaluation of new mechanisms for idle-time NFS is similar to those

presented in Section 4.5. It will compare throughput and latency of different-size NFS read and

write operations in the basic case (without idle-time use) against the performance of the same re-

quests under varying idle-time loads. Idle-time loads will both vary in intensity and in their target

resources (e.g. disk-only, disk-and-CPU, etc.) Effective mechanisms for idle-time NFS will shield

regular NFS traffic from the presence of idle-time use under all intensities and target resources.

While the previously described experiments are sufficient to determine to which degree new idle-

time NFS mechanisms support prioritization and preemption, they do not measure whether isola-

tion is established. Isolation is a condition, not a performance function. Part of the research to es-

tablish isolation must focus on defining an adequate metric for it.

Finally, Figure 20 shows the planned timeline for the completion of the proposed research.

I
D

Task Name
Q1 02 Q3 02Q2 02Q4 01

MayAprFebDec Mar JulNov Jan Jun

1Planning

5 IT Disk I/O

6 IT Disk Capacity

7 IT Networking Integration

8 Isolation Mechanisms

9
1
0
1
1

Evaluation

Testing

4Implementation

3 Experimental Evaluation

2 Design

Documentation

Aug Sep

Figure 20: Timeline of the proposed research for idle-time (IT) NFS.

 - 72 -

7 Appendix: Extended Research Plan
The plan for the remainder of this thesis research is to support idle-time use of the network file

system (NFS), as well as extend the underlying resource model. Both tasks will be detailed be-

low.

First, the current resource model does not describe speculation costs and benefits, nor stateful re-

sources (where prior operations can change the overhead of future ones) or virtual resources (that

are users of other resources themselves). I plan to extend the model to describe these properties.

The major part of the thesis effort will be spent on the second part: extending the network file

system (NFS) to support idle-time use. This work builds on the existing idle-time networking

mechanisms. A major new component are mechanisms handling idle-time disk I/O and storage

management.

One application for idle-time NFS are web caches, which replicate recently/frequently accessed

web objects locally. Web caches aim at reducing both network and server load and page access

times. Their effectiveness (aggregate hit rate) depends on two factors: cache size and per-entry hit

rates. Increasing either of the two can increase the performance of the cache.

If remote idle disk capacity can be used as storage for the web cache – without interfering with

regular use on the remote system – the cache size could grow by an order of magnitude or more,

compared to storing it on local disk. As mentioned above, this can increase the aggregate hit rate

of the cache, especially in scenarios where per-entry hit rates are low.

Data stored in idle-time capacity can disappear when part of the capacity is reclaimed for regular,

non-idle-time use. Web cache entries are speculative by nature, and web caches already contain

mechanisms (i.e. transparent re-requests) for missing data. Thus, they are well fitted for idle-time

storage.

Support for idle-time NFS requires these components, which will be discussed in detail in the

paragraphs below:

1. Extended idle-time networking (~ 1 month)

 - 73 -

2. New idle-time support for disk I/O (~ 2 months)

3. New idle-time support for disk storage (~ 3 months)

The first step (1) are minor extensions to the existing idle-time network service, that should be

completed within 1 month. A modified send mechanism (postponing a send attempt vs. simply

dropping idle-time packets when the network is busy) may allow a higher idle-time throughput

while still keeping regular traffic shielded. The current mechanisms, while effective in shielding

regular traffic from the presence of idle-time use, too restrictively limit idle-time transmissions

over a partially idle network. This part of the research will focus on TCP for NFS transmissions,

UDP will not be investigated. The modified mechanisms will be evaluated in the same bench-

mark framework used during the proposal experiments.

The second step (2) implements idle-time use of disk I/O bandwidth. The current SCAN disk

scheduler will be extended to support prioritized use, taking unique disk properties into account

(seek time dominates, extra accesses during one arm sweep incur only minor overhead). Again,

the new disk scheduler will be evaluated in the existing benchmark framework, both locally and

together with the networking mechanisms. This part is estimated to require 2 months.

The final task addresses idle-time use of storage capacity. Tasks (1) and (2) focus on shielding

regular processing from the presence of idle-time use (through prioritization and preemptability).

Task (3) focuses on isolation mechanisms for disk storage capacity. Disk blocks that are unused

by the regular file system will be used as storage capacity for a shadow file system for idle-time

use. One major subtask is a mechanism for reclaiming blocks under idle-time use for regular stor-

age, when needed. The estimated time for completing this component is 3 months.

 - 74 -

8 Appendix: Related Work – Concurrency Control
Sections 2.2.3 and 2.3.3 in this thesis proposal presented the principle of isolation, which requires

that the side effects of speculative requests must remain hidden until they are committed or dis-

carded by the entity that issued the speculation (depends on the workload generation method).

The isolation principle virtualizes the operating system (OS) state. In an unmodified OS, all proc-

essing operates on the same system state, transforming it over time. In the presence of isolation,

this can lead to incorrect processing, if the side effects (state modifications) of speculations be-

come visible to regular processing.

One example of such a conflict is a speculative listen on a port. If a regular process tries to per-

form the same operation at a later time, the OS must deny this request, since the port number is

already in use.

This is what isolation prevents. Since all speculations execute on virtual OS state (copy-on-write

variant), the OS state seen by regular processing remains unchanged, and the execution behavior

remains unchanged from the basic case (no speculation present in the system).

If the system deems a speculation to be unsuccessful, the virtual state associated with it can be

discarded. However, the result of successful speculations (i.e. the side effects of the speculation)

should be merged into the regular OS state. To prevent incorrect processing, this merge must be

performed as an atomic operation with regard to other processing (regular and speculations).

Furthermore, conflicts between the regular and virtual OS state can arise, when regular process-

ing modified the same pieces of state as a speculation did. This is similar to processing of concur-

rent transactions in a database system, where the same data item may be involved in multiple

transactions.

8.1 Concurrency Control in Database Systems

Transactions in database systems are atomic operations on the contents (state) of a database. Al-

lowing multiple transactions to execute concurrently increases performance, but requires mecha-

nisms maintain database correctness.

 - 75 -

Correctness depends on two conditions: integrity (defined through a set of constraints on the con-

tents) and serializability. The latter requires database state changes to be equivalent to some serial

execution of the given set of transactions.

A wide variety of mechanisms for concurrency control have been proposed [BERNSTEIN

1981][BHARGAVA 1999][KOHLER 1981][THOMASIAN 1998]. They can be roughly divided into

three groups: locking, timestamps and rollback. Each of these groups will be briefly outlined be-

low.

8.1.1 Locking

One scheme to address concurrency control is locking all data items required for a transaction.

When a data item is already locked (by another concurrent transaction), a transaction can either

wait, abort itself or preempt the other transaction. This is a pessimistic scheme, since the locking

overhead is incurred even when transactions do not conflict.

One issue with this scheme is deadlock (circular lock dependencies among multiple transactions),

which can be remedied with various solutions, (e.g. two-phase locking, ordered locks).

8.1.2 Timestamps

Another mechanism for concurrency control are timestamps on operations, which specify a fixed,

serial processing order for all operations, guaranteeing consistency. Globally synchronized clocks

are required. When conflicts arise, they are strictly resolved in timestamp-order.

Some timestamp schemes use implicit locking to maintain consistency, hile others are based on

voting mechanisms, which trade overhead for central locks for communication overhead (which

can be less in some decentralized systems).

8.1.3 Rollback

Rollback concurrency control schemes differ from the previously described classes in that no

conflict prevention scheme is in effect during transaction processing. Instead, this scheme handles

conflicts during commit time, by rolling back all state changes, and then either aborting or restart-

ing.

 - 76 -

Rollback schemes are optimistic in that the basic assumption is that conflicts will be rare, and in-

frequent concurrency control during commit time is more efficient than employing an a priori

scheme on every transaction.

8.2 Discussion

There are two ways in which the proposed mechanism for speculative execution could benefit

from database concurrency-control techniques. First, OS processes can be seen as database trans-

actions, and the entire processing model could be mapped. Second, such techniques could im-

prove the critical operation that maintains the isolation principle – merging of virtual state.

8.2.1 OS Processes as Database Applications

At some level, process execution in an OS and transaction processing in a database system are

similar: Both allow multiple, concurrent entities (processes and transactions) to perform opera-

tions on shared state. However, concurrency control mechanisms for database systems may not

directly apply to OS, due to a few key differences.

State conflicts in OS processing are relatively rare; first because processes usually spend a good

part of their time in user-space (processing private, unshared state). Second, multiprocessors were

rare, and systems had thus only one active physical thread of execution (even though simulating

multiple threads of control through CPU scheduling). Thus, the OS could lock state through

blocking interrupts, a fast operation. This is changing towards lock-based schemes as multi-

processors are becoming more common [LEHEY 2001][SCHIMMEL 1994], because interrupt block-

ing is limited to single CPUs. The locking overhead (compared to blocking interrupts) is compen-

sated for by allowing more than one CPU to execute kernel code concurrently, and locks are

placed on carefully (and manually) identified pieces of the kernel state.

Another issue is that concurrency-control mechanisms in databases must be general enough for a

wide variety of dynamic application domains. On the other hand, the uses for such mechanisms

in an OS are well-known and static, so simplified special-case mechanisms are worth deploying

(e.g. for the process lists, device queues, etc.)

 - 77 -

Furthermore, in the model proposed here, speculations have a lower priority than regular process-

ing and are preemptable. While some concurrency control mechanism support similar prioritized

models (e.g. for real-time databases) [HARITSA 1992][LINDSTROM 2000][YU 1994], they are not

immediately applicable to prioritize speculations. (See the discussion on real-time systems in Sec-

tion 5.1 of the proposal, similar arguments apply here.)

In databases, one correctness criterion is the existence of a serialized execution of the same trans-

actions. The valid execution order of a set of OS operations in the presence of speculations is

much more constrained: The order of regular operations on OS state must be unchanged from the

basic case when speculations are present, and the intermediary OS states must also be identical.

(See Section 2.2.3 for details.) Database mechanisms enforcing conventional serializability may

not satisfy these stricter requirements.

8.2.2 Concurrency Control for State Merging

The atomic merge operation after a successful speculation is another place where concurrency-

control ideas from databases may apply.

This state merge is a strictly confined operation. First, only two sets of data are involved (regular

and speculative). It is rare that two successful speculations finish at the same time, and they can

be committed in any order in that case.

Second, regular state has priority over speculative state: If a piece of regular state has changed

during the speculation, the merge cannot be completed, and the result of the speculation must be

discarded.

Third, even if a speculation runs to completion, it is not automatically successful - continued

regular processing can change the usefulness of the speculation during its execution.

This makes optimistic, rollback-based ideas unsuitable for this operation. Such mechanisms

would merge speculative state before the speculation ends (assuming absence of conflicts and

success on termination). Rollbacks are triggered on conflicts, which causes regular processing de-

lays whenever speculation fails.

 - 78 -

Timestamp-based mechanisms are also not well suited to this scenario. Timestamps provide a se-

rial execution order for transactions. However, timestamps do not capture the constraints of the

state merge (regular state always overrides speculative state) well.

Lock-based mechanisms, on the other hand, are very applicable. A single lock for the whole state

is the simplest solution. In effect, this preempts regular use for the duration of the merge opera-

tion, and will thus decrease regular performance. However, since this overhead is only incurred

for successful speculations - which potentially improve regular performance - the locking over-

head may be compensated by the speculation gain.

Using multiple locks for different parts of the OS state could further minimize the locking cost.

For example, if a speculation has only changed state in the "network" part of the OS state, it

would only need to acquire the "network" lock - regular processing that does not involve the

"network" state could continue during the merge. This maps well to a copy-on-write approach for

speculative state management, where different pieces of state can be locked to allow merging

speculative revisions.

In the extreme case, each data item in the OS state would offer a separate lock. Clearly, this is in-

feasible due to the space overhead. An adequate mechanism will probably utilize multiple locks

for logically separate parts of the state space.

8.2.3 Concurrency Control for Speculative Use

The database processing model is more general, but also more complex than the one proposed for

an OS with speculative use. For the remainder of the thesis research, a simple copy-on-write vari-

ant is under investigation to manage virtual OS state for speculations.

When a speculation starts, no virtual state is associated with it until it starts performing write op-

erations on OS state. Whenever is about to perform a write operation to a data item, the system

atomically copies that data item (or a larger piece of state containing the item, such as a page),

and then executes the write on the copied item. Read operations read from virtual state, if it exists

for a given data item, and from regular OS state otherwise.

 - 79 -

This scheme achieves the goal of isolating regular processing from the side effects of speculations

- speculative writes modify only copies. It does not provide the reverse (i.e. speculations do see

the side effects of regular processing), but this is not required.

It is a variant of traditional copy-on-write schemes [RASHID 1988][BRUSTOLONI 1996] because of

the state merge operation required for successful speculations, which is unique to this scenario. At

the end of a successful speculation, the system tries to merge the virtual state created by the

speculation with the regular state existing at that time. Since data items can change in both virtual

and regular state (when concurrent regular processing writes to the same data item), the system

must detect these write conflicts, and abort (or restart) the speculation. Mechanisms to support

this include checksums and access timestamps.

The details of the proposed mechanisms will be investigated as part of the thesis research.

8.3 Conclusion

While processing in general databases and operating systems is very similar at a high level, the

operations required to support speculative use of idle resources have unique properties that

mechanisms proposed for database systems databases either cannot support, or only support with

additional overheads due to their generality. However, some of their more basic concurrency-

control techniques (such as lock-based schemes) can be modified to support this scenario. A cus-

tomized concurrency-control mechanism for isolation of speculative side-effects, based on a vari-

ant of copy-on-write and locking, has been outlined and will be further investigated in the re-

mainder of this thesis.

 - 80 -

Bibliography

[ACHARYA 1999] Anurag Acharya and Sanjeev Setia. Availability and Utility of Idle Mem-

ory in Workstation Clusters. Proc. ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, Atlanta, GA, USA,

May 1999, pp. 35-46.

[AKYUREK 1995] Sedat Akyurek and Kenneth Salem. Adaptive Block Rearrangement.

ACM Transactions on Computer Systems, Vol. 13, No. 2, May 1995, pp.

89-121.

[ATM 1999] ATM Forum. ATM Forum Traffic Management Specification Version

4.1. AF-TM-0121.000, March 1999.

[BALA 1994] Kavita Bala, M. Frans Kaashoek and William E. Weihl. Software Pre-

fetching for Translation Lookaside Buffers. Proc. 1st USENIX Symposium

on Operating System Design and Implementation (OSDI), Monterey, CA,

USA, November 14-17, 1994, pp 243-254.

[BARISH 2000] Greg Barish, Craig A. Knoblock and Steven Minton. Speculative Execu-

tion for Information Agents. Proc. 17th National Conference on Artificial

Intelligence (AAAI), Austin, TX, USA, August 2000.

[BERNSTEIN 1981] Philip A. Bernstein and Nathan Goodman. Concurrency Control in Dis-

tributed Database Systems. ACM Computing Surveys, Vol. 13, No. 2,

June 1981, pp. 185-221.

[BHARGAVA 1999] Bharat Bhargava. Concurrency Control in Database Systems. IEEE

Transactions on Knowledge and Data Engineering, Vol. 11, No. 1, Janu-

ary/February 1999, pp. 3-16.

 - 81 -

[BLAKE 1998] Steven Blake, David Black, Mark Carlson, Elwyn Davies, Zheng Wang,

and Walter Weiss. An Architecture for Differentiated Services. RFC

2475, December 1998.

[BRUNO 1998] John Bruno, Eran Gabber, Banu Özden, and Abraham Silberschatz. The

Eclipse Operating System: Providing Quality of Service via Reservation

Domains. Proc. USENIX 1998 Annual Technical Conference, New Or-

leans, LA, USA, June 1998, pp. 235-246.

[BRUNO 1999] John Bruno, José Brustoloni, Eran Gabber, Banu Özden, and Abraham

Silberschatz. Retrofitting Quality of Service into a Time-Sharing Operat-

ing System. Proc. USENIX 1999 Annual Technical Conference, Mon-

terey, CA, USA, June 1999, pp. 15-26.

[BRUSTOLONI 1996] Jose Brustoloni and Peter. Steenkiste. Effects of Buffering Semantics on

I/O Performance. Proc. 2nd Symposium on Operating Systems Design and

Implementation (OSDI '96), October 1996, pp 277-291.

[CHANG 1999] Fay Chang and Garth A. Gibson. Automatic I/O Hint Generation through

Speculative Execution. Proc. 3rd USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI), New Orleans, LA, USA, Feb-

ruary 1999, pp. 1-14.

[CHEN 1998] Mike Chen and Kunle Olukotun. Exploiting Method-Level Parallelism in

Single-Threaded Java Programs. Proc. International Conference on Par-

allel Architectures and Compilation Techniques (PACT), October 1998,

pp. 176-184.

[CHO 1998] Kenjiro Cho. A Framework for Alternate Queueing: Towards Traffic

Management by PC-UNIX Based Routers. Proc. USENIX Annual Tech-

nical Conference, New Orleans, LA, USA, June 1998, pp. 247-258.

[CLARK 1988] David Clark. The Design Philosophy of the DARPA Internet Protocols.

Computer Communication Review, Vol. 18, No. 4, 1988, pp. 106-114.

 - 82 -

[CLARK 1992] Henry Clark and Bruce McMillin. DAWGS - A Distributed Compute

Server Utilizing Idle Workstations. Journal of Parallel and Distributed

Computing, Vol. 14, 1992, pp 175-186.

[CLARK 1998] David Clark and Wenjia Fang. Explicit Allocation of Best-Effort Packet

Delivery Service. IEEE/ACM Transactions on Networking, Vol.6, August

1998, pp. 362-373.

[COHEN 2000] Edith Cohen and Haim Kaplan. Prefetching the Means for Document

Transfer: A New Approach for Reducing Web Latency. Proc. 19th IEEE

INFOCOM, Tel Aviv, Israel, March 2000, pp. 854-863.

[DOUGAN 1999] Cort Dougan, Paul Mackerras and Victor Yodaiken. Optimizing the Idle

Task and Other MMU Tricks. Proc. 3rd USENIX Symposium on Operat-

ing Systems Design and Implementation (OSDI), February 1999, pp. 229-

237.

[DOUGLIS 1991] Fred Douglis and John Ousterhout. Transparent Process Migration: De-

sign Alternatives and the Sprite Implementation. Software - Practice and

Experience (SPE), Vol. 21, No. 8, 1991, pp. 757-785.

[DRUSCHEL 1996] Peter Druschel and Gaurav Banga. Lazy Receiver Processing (LRP): A

Network Subsystem Architecture for Server Systems. Proc. 2nd USENIX

Symposium on Operating System Design and Implementation (OSDI),

Seattle, WA, USA, October 1996, pp. 261-275.

[EGGERT 1999] Lars Eggert and John Heidemann. Application-Level Differentiated Ser-

vices for Web Servers. World Wide Web Journal, Volume 3, Issue 2,

1999, pp. 133-142.

 - 83 -

[FEELEY 1995] Michael J. Feeley, William E. Morgan, Frederic H. Pighin, Anna R. Kar-

lin, Henry M. Levy and Chandroman A. Thekkath. Implementing Global

Memory Management in a Workstation Cluster. Proc. 15th ACM Sympo-

sium on Operating System Principles (SOSP), Copper Mountain, CO,

USA, December 1995, pp. 201-212.

[FORD 1996] Bryan Ford and Sai Susarla. CPU Inheritance Scheduling. Proc. 2nd

USENIX Symposium on Operating Systems Design and Implementation

(OSDI), Seattle, WA, USA, October 1996, pp. 91-105.

[FRANKLIN 1996] Manoj Franklin and Gurindar S. Sohi. ARB: A Hardware Mechanism for

Dynamic Reordering of Memory References. IEEE Transactions on

Computers, Vol. 45, No. 5, May 1996, pp. 552-571.

[GOLDING 1995] Richard Golding, Peter Bosch, Carl Staelin, Tim Sullivan, and John

Wilkes. Idleness is not sloth. Proc. USENIX Technical Conference, Janu-

ary 1995, pp. 201-212.

[GOPAL 1998] Sridhar Gopal, T.N. Vijaykumar, James E. Smith and Gurindar S. Sohi.

Speculative Versioning Cache. Proc. 4th Symposium on High-

Performance Computer Architecture, February 1998, pp. 195-205.

[GUPTA 1997] Alok Gupta, Dale O. Stahl and Andrew B. Whinston. Priority Pricing of

Integrated Services Networks. Internet Economics, L. W. McKnight and

J. P. Bailey (editors), MIT Press, 1997, pp. 323-352.

[HARITSA 1992] Jayant R. Haritsa, Michael J. Carey and Miron Livny. Data Access

Scheduling in Firm Real-Time Databases. Real-Time Systems, Vol. 4, No.

3, 1992, pp. 203-241.

[HARKINS 1998] Dan Harkins and D. Carrell. The Internet Key Exchange (IKE). RFC

2409, November 1998.

 - 84 -

[HAYES 1998] Brian Hayes. Collective Wisdom. American Scientist, Vol. 86. No. 2,

March-April 1998, pp. 118-122.

[HULL 2000] Richard Hull, Francois Llirbat, Bharat Kumar, Ganz Zhou, Gouzhu Dong

and Jianwen Su. Optimization Techniques for Data-Intensive Decision

Flows. Proc. 16th International Conference on Data Engineering

(ICDE), San Diego, CA, USA, March 2000, pp 281-292.

[JACOBSON 1999] Van Jacobson, Kathleen Nichols and Kedarnath Poduri. An Expedited

Forwarding PHB. RFC 2598, June 1999.

[JINMEI 1998] Tatuya Jinmei, Kazu Yamamoto, Jun-ichiro Hagino, Munechika Sumi-

kawa, Yoshinou Inoue, Kazushi Sugyo and Soichi Sakane. An Overview

of the KAME Network Software: Design and Implementation of the Ad-

vanced Internetworking Platform. Proc. 9th Annual Conference of the

Internet Society (INET’99), San Jose, CA, USA, 1998.

[KAMP 2000] Poul-Henning Kamp and Robert N. M. Watson. Jails: Confining the Om-

nipotent Root. Proc. System Administration and Networking Conference

(SANE), Maastricht, The Netherlands, May 2000.

[KING 1990] Richard P. King. Disk Arm Movement in Anticipation of Future Re-

quests. ACM Transactions on Computer Systems, Vol. 8, No. 3, 1990, pp.

214-229.

[KOHLER 1981] Walter H. Kohler. A Survey of Techniques for Synchronization and Re-

covery in Decentralized Computer Systems. ACM Computing Surveys,

Vol. 13, No.2, June 1981, pp. 149-183.

[KORPELA 2001] Eric Korpela, Dan Werthimer, David Anderson, Jeff Cobb and Matt Le-

bofsky. SETI@home: Massively Distributed Computing for SETI. IEEE

Computing in Science and Engineering, Vol. 3, No. 1, January/February

2001, pp. 78-83.

 - 85 -

[KOUSSIH 1999] Samir Koussih, Anurag Acharya and Sanjeev Setia. Dodo: A User-level

System for Exploiting Idle Memory in Workstation Clusters. Proc. 8th

IEEE International Symposium on High Performance Distributed

Computing (HPDC-8), Redondo Beach, CA, USA, August 1999, pp.

301-308.

[KWAK 1999] Hantak Kwak, Ben Lee, Ali R. Hurson, Suk-Han Yoon and Woo-Jong

Hahn. Effects of Multithreading on Cache Performance. IEEE Transac-

tions on Computers, Vol. 48, No. 2, February 1999, pp. 176-184.

[LAKSHMAN 1998] K. Lakshman, Raj Yavatkar and Raphael Finkel. Integrated CPU and

Network-I/O QoS Management In An Endsystem. Computer Communi-

cations, Vol. 21, No. 4, April 1998, pp. 325-333.

[LAMPSON 1980] Butler Lampson and David Redell. Experience with Processes and Moni-

tors in Mesa. Communications of the ACM, Vol. 23, No. 2, February

1980, pp. 105-117.

[LEHEY 2001] Greg Lehey. Improving the FreeBSD SMP Implementation. FREENIX

Track: 2001 USENIX Annual Technical Conference, Boston, MA, USA,

June 25-30.

[LESLIE 1996] Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul Bar-

ham, David Evers, Robin Fairbairns and Eoin Hyden. The Design and

Implementation of an Operating System to Support Distributed Multime-

dia Applications. IEEE Journal on Selected Areas In Communications

(JSAC), Vol. 14, No. 7, September 1996, pp. 1280-1297.

[LEVER 2000] Chuck Lever, Marius Aamodt Eriksen and Stephen P. Molloy. An analy-

sis of the TUX web server. CITI Technical Report 00-8, Center for In-

formation Technology Integration, University of Michigan, November

16, 2000.

 - 86 -

[LINDSTROM 2000] Jan Lindstrom and Kimmo Raatikainen. Using Importance of Transac-

tions and Optimistic Concurrency Control in Firm Real-Time Databases.

Proc. 7th International Conference on Real-Time Systems and Applica-

tions (RTCSA '00), Cheju Island, South Korea, December 12-14, 2000.

[LIZTKOW 1988] Michael J. Liztkow, Miron Livny and Matt W. Mutka. Condor - A Hunter

of Idle Workstations. Proc. 8th International Conference on Distributed

Computing Systems, San Jose, CA, USA, June 1988, pp. 104-111.

[MARKATOS 1996] Evangelos P. Markatos and George Dramitinos. Implementation of a Re-

liable Remote Memory Pager. Proc. 1996 USENIX Annual Technical

Conference, Berkeley, CA, USA, January 1996, pp. 177-190.

[MATTHEWS 1997] Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Randolph Y.

Wang and Thomas E. Anderson. Improving the Performance of Log-

Structured File Systems with Adaptive Methods. Proc. 16th ACM Sympo-

sium on Operating Systems Principles (SOSP), Saint Malo, France, Oc-

tober 5-8, 1997, pp. 238-251.

[MCKUSICK 1999] Marshall Kirk McKusick and Gregory R. Granger. Soft Updates: A

Technique for Eliminating Most Synchronous Writes in the Fast Filesys-

tem. Proc. Freenix Track of the 1999 USENIX Annual Technical Confer-

ence, Monterey, CA, USA, June 6-11, 1999, pp. 1-17.

[MINNICH 1989] Ronald G. Minnich and David J. Farber. The Mether system: A distrib-

uted shared memory for SunOS 4.0. Proc. Summer 1989 USENIX Con-

ference, Baltimore, MY, USA, June 1989, pp. 51-60.

[MOGUL 1990] Jeffrey C. Mogul and Stephen Deering. Path MTU Discovery. RFC 1191,

November 1990.

[MOGUL 1997] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating Receive Live-

lock in an Interrupt-Driven Kernel. ACM Transactions on Computer Sys-

tems, Vol. 15, No. 3, August 1997, pp. 217-252.

 - 87 -

[MOLANO 1998] Anastasio Molano, Ragunathan Rajkumar and Kanaka Juvva. Dynamic

Disk Bandwidth Management and Metadata Pre-fetching in a Real-Time

Filesystem. Proc. 10th IEEE Euromicro Workshop on Real-Time Systems,

Berlin, Germany, June 17-1, 1998, pp. 203-213.

[MOSBERGER 1996] David Mosberger and Larry L. Peterson. Making Paths Explicit in the

Scout Operating System. Proc. 2nd USENIX Symposium on Operating

Systems Design and Implementation (OSDI), Seattle, WA, USA, October

1996, pp. 153-168.

[MOWRY 1996] Todd C. Mowry, Angela K. Demke and Orran Krieger. Automatic Com-

piler-Inserted I/O Prefetching for Out-of-Core Applications. Proc. 2nd

USENIX Symposium on Operating Systems Design and Implementation

(OSDI), Seattle, WA, USA, October 1996, pp. 3-17.

[MOWRY 1998] Todd C. Mowry. Tolerating Latency in Multiprocessors through Com-

piler-Inserted Prefetching. ACM Transactions on Computer Systems, Vol.

16, No. 1, February 1998, pp. 55-92.

[MUMOLO 1999] Enzo Mumolo. Prediction of Disk Arm Movements in Anticipation of

Future Requests. Proc. 7th IEEE International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems

(MASCOTS), College Park, MD, USA, October 24-28, 1999, pp. 305-

312.

[MUTTKA 1987] Matt W. Mutka and Miron Livny. Profiling Workstations’ Available Ca-

pacity For Remote Execution. Proc. 12th IFIP WG 7.3 Symposium on

Computer Performance, Brussels, Belgium, December 1987, pp. 529-

544.

[MUTKA 1991] Matt W. Mutka and Miron Livny. The available capacity of a privately

owned workstation environment. Performance Evaluation, Vol. 12, 1991,

pp. 269-284.

 - 88 -

[NAHRSTEDT 1996] Klara Nahrstedt, and Jonathan M. Smith. Design, Implementation and

Experiences with the OMEGA End-point Architecture. IEEE Journal on

Selected Areas in Communications (JSAC), Vol. 17, No. 7, September

1996, pp. 1263-1279.

[NARTEN 1992] Thomas Narten and Raj Yavatkar. Remote Memory as a Resource in Dis-

tributed Systems. Proc. 3rd IEEE Workshop on Operating Systems, Key

Biscane, FL, USA, April 23-24, 1992, pp. 132-136.

[NICHOLS 1987] David A. Nichols. Using Idle Workstations in a Shared Computing

Environment. Proc. 11th ACM Symposium on Operating Systems

Principles (SOSP), Austin, TX, USA, November 1987, pp. 5-12.

[NIEH 1993] Jason Nieh, James G. Hanko, J. Duane Northcutt and Gerald A. Wall.

SVR4 UNIX Scheduler Unacceptable for Multimedia Applications. Proc.

4th Workshop on Network and Operating System Support for Digital Au-

dio and Video (NOSSDAV), Lancaster, UK, November 1993.

[OZAWA 1995] Toshihiro Ozawa, Yasunori Kimura and Shin'ichiro Nishizaki. Cache

Miss Heuristics and Preloading Techniques for General-Purpose Pro-

grams. Proc. 28th ACM International Symposium on Microarchitecture

(MICRO), Ann Arbor, MI, USA, November 1995, pp. 243-248.

[PADMANABHAN 1996] Venkata N. Padmanabhan and Jeffrey C. Mogul. Using predictive pre-

fetching to improve World-Wide Web latency. ACM SIGCOMM Com-

puter Communication Review, Vol. 27, No. 3, 1996, pp. 22-36.

[PATTERSON 1995] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky and

Jim Zelenka. Informed Prefetching and Caching. Proc. 15th ACM Sympo-

sium on Operating Systems Principles (SOSP), Copper Mountain, CO,

USA, December 3-6, 1995, pp. 79-95.

 - 89 -

[PIERCE 1994] Jim Pierce and Trevor Mudge. The Effect of Speculative Execution on

Cache Performance. Proc. 8th Parallel Processing Symposium, April

1994, pp. 172-179.

[POSIX 1993] POSIX 1003.1b-1993. Portable Operating System Interface (POSIX)

Part 1: System Application Program Interface Amendment 1: Realtime

Extension [C Language], 1993.

[POSTEL 1981] Jon Postel. DARPA Internet Protocol Specification. RFC 791, September

1981.

[RASHID 1988] Richard F. Rashid, Avadis Tevanian, Michael Young, David B. Golub,

Robert V. Baron, David L. Black, William J. Bolosky, Jonathan Chew.

Machine-Independent Virtual Memory Management for Paged Uniproc-

essor and Multiprocessor Architectures. IEEE Transactions on Com-

puters, Vol. 37, No. 8, 1988, pp. 896-907.

[REZNICK 1993] Larry Reznick. Using cron and crontab. Sys Admin: The Journal for

UNIX Systems Administrators, Vol. 2, No. 4, July/August 1993, pp. 29-

34.

[RICHARDSON 2001] Michael Richardson, D. Hugh Redelmeier and Henry Spencer. A method

for doing opportunistic encryption with IKE. Work In Progress (draft-

richardson-ipsec-opportunistic-02.txt), September 2001.

[SANDBERG 1985] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob

Lyon. Design and implementation of the Sun Network File System. Proc.

USENIX Summer Technical Conference, Portland, OR, USA, June 1985,

pp. 119-130.

[SCHIMMEL 1994] Curt Schimmel. UNIX Systems for Modern Architectures. Addison-

Wesley, 1994.

 - 90 -

[SPRUNT 1988] Brinkley Sprunt, David Kirk and Lui Sha. Priority-Driven, Preemptive

I/O Controllers for Real-Time Systems. Proc. IEEE 15th Annual Interna-

tional Symposium on Computer Architecture, May/June 1988, pp. 152-

159.

[STANKOVIC 1991] John A. Stankovic and Krithi Ramamritham. The Spring Kernel: A New

Paradigm for Real-Time Systems. IEEE Software, Vol. 8, No. 4, May

1991, pp. 62-72.

[TANDIARY 1996] Fredy Tandiary, Suraj C. Kothari, Ashish Dixit, and E.Walter Anderson.

Batrun: Utilizing Idle Workstations for Large-scale Computing. IEEE

Parallel and Distributed Technology, Vol. 4, No. 2, 1996, pp. 41-48.

[THEIMER 1985] Marvin M. Theimer, Keith A. Lantz and David R. Cheriton. Preemptable

Remote Execution Facilities for the V-System. Proc. 10th ACM Sympo-

sium on Operating Systems Principles (SOSP), December 1985, pp. 2-

12; published as Operating Systems Review, Vol. 19, No. 5.

[THIBODEAU 1998] Jan Thibodeau (editor). The Basic Guide to Frame Relay Networking.

Frame Relay Forum, Fremont, CA, USA, 1998.

[THOMASIAN 1998] Alexander Thomasian. Concurrency Control: Methods, Performance and

Analysis. ACM Computing Surveys, Vol. 30, No. 1, March 1998, pp. 70-

119.

[TOKUDA 1990] Hideyuki Tokuda, Tatsuo Nakajima and Prithvi Rao. Real-Time Mach:

Towards a Predictable Real-Time System. Proc USENIX Mach Work-

shop, Burlington, VT, USA, October 1990, pp. 73-82.

[TOUCH 1992] Joseph D. Touch. Mirage: A Model for Latency in Communication.

Ph.D. Dissertation, MS-CIS-92-42, DSL-11, Department of Computer

and Information Science, University of Pennsylvania, January 1992.

 - 91 -

[TOUCH 1994] Joseph D. Touch. Defining High Speed Protocols: Five Challenges and

an Example That Survives the Challenges. IEEE Journal on Selected Ar-

eas in Communications (JSAC), Vol. 13, No. 5, June 1995, pp. 828-835.

[TOUCH 1995] Joseph D. Touch and David J. Farber. An Experiment in Latency Reduc-

tion. Proc. IEEE INFOCOM, Toronto, Canada, June 1994, pp. 175-181.

[TOUCH 1998] Joseph D. Touch and Amy S. Hughes. The LSAM Proxy Cache - a Mul-

ticast Distributed Virtual Cache. Computer Networks and ISDN Systems,

Vol. 30, No. 22-23, November 1998, pp. 2245-2252.

[WALLACE 1998] Steven Wallace, Brad Calder and Dean M. Tullsen. Threaded Multiple

Path Execution. Proc. 25th ACM Symposium on Computer Architecture,

June/July 1998, pp. 238-249.

[WYCKOFF 1998] Peter Wyckoff, Theodore Johnson and Karpjoo Jeong. Finding Idle Peri-

ods on Networks of Workstations. Technical Report TR1998-761, Com-

puter Science Department, New York University, March 1998.

[YEE 1993] Jenn-Jong Yee, Ming-Dong Feng and Chung-Kwong Yuen. Speculative

Processing Mechanisms in a Parallel Lisp Machine: BIDDLE. Proc. 26th

Hawaii International Conference on System Sciences, Vol. 1, January

1993, pp. 457-465.

[YU 1994] Philip S. Yu, Kun-Lung Wu, Kwei-Jay Lin and Sang H. Son. On Real-

Time Databases: Concurrency Control and Scheduling. Proc. IEEE, Spe-

cial Issue on Real-Time Systems, January 1994, pp. 140-157.

		2003-08-19T13:56:38-0700
	Lars Eggert
	I am the author of this document

