The X-Bone & its Virtual Internet Architecture
10 Years Later

Joe Touch, Greg Finn, Lars Eggert, Amy Hughes and Yu-Shun Wang

Workshop on Overlay and Network Virtualization
16th GI/ITG Conference on Kommunikation in Verteilten Systemen

Kassel, Germany
March 6, 2009
History

- **X-Bone** was a series of research projects at USC/ISI
 - 1997-2005+
 - initial funding from DARPA, follow-on funding from the NSF
 - http://www.isi.edu/xbone/

- **key results**
 - an architecture (the “Virtual Internet” architecture)
 - a deployment/management system (the “X-Bone”)
 - follow-on work using virtual nets
X-Bone Overlay System

Web GUI

Multiple views

X-Bone system

Automated monitoring

March 6, 2009
X-Bone Timeline

- 1997 – first whitepaper
- 1998-2001 – X-Bone (DARPA)
 - IP overlays with revisitation, recursion (LISP)
 - 2000 – running code (FreeBSD, Linux)
 - 2000 – application deployment
 - 2001 – TetherNet “NAT-buster” to support demos
- 2001-2004 – DynaBone (DARPA)
 - 800-way spread-spectrum parallel overlays
 - 15-level deep overlays
- 2001-2003 – NetFS (NSF)
 - File system configuration of network properties
- 2002-2005 – X-Tend (NSF)
 - X-Bone for testbed uses
- 2003-2005 – DataRouter (int.)
 - Support for overlay P2P forwarding
- 2005-2006 – Agile Tunnels (NSA)
 - Partial overlays for DDOS safety
- 2006-2009 – RNA (NSF)
 - Extending X-Bone Choices model to general protocol stack architecture
Creating a Ring

Request

Internet

Ring Ovl.
Virtual Internet – Why

- “network equivalent of virtual memory”
- protection
 - separate topology, optionally secured
 - test + deploy new protocol/service
- sharing
 - increase utility of infrastructure
- abstraction
 - adapt topology to application
Virtual Internet – What

- network = hosts + routers + links
- virtual network =
 - virtual host → packet src/sink
 - + virtual router → packet gateway
 - + virtual link → tunnel X over Y
- virtual Internet – ”network of networks”
 - use Internet as physical media
 - create virtual link & network layers
 - strong L2 vs. weak L3 host model
- a virtual Internet should look exactly like the real thing
 - “if an app can know it runs in a VI, we did it wrong
Feature – Recursion

- virtual Internets on top of virtual Internets
- our litmus test:
 - system should be able to do recursive VI-in-VI without hacks
- recursion has real uses cases
- e.g., allows transparent reconfiguration
 - change outer VI w/o affecting inner
 - fault tolerance, basis for DynaBone
- also allows VI “embedding”
 - “router is a network inside”
Feature – Concurrency

- one node participates in multiple virtual Internets at the same time
- basis for isolation & abstraction
- bind different apps/VMs to different VIs on the same physical node
Feature – Revisitation

- one node participates in the same virtual Internet but multiple times
- allows creation of VIs larger than physical resources
- fully decouples virtual from physical topologies
Feature – Security

- security in the Virtual Internet architecture is a virtual link property
 - decoupled from topology
 - transparently coexists with end-to-end security inside the VI
 - transparently coexists with security underneath a VI

- IPIP tunnels + IPsec transport mode
 - modular tunnel mode equivalent
 - huge IETF debate around 2000 (draft-touch-ipsec-vpn-05.txt)
The X-Bone System

- deployment + management system for VIs
 - programs → standardized API
 - humans → web interface
- virtual network description language
 - high-level: express virtual topology + services
 - XML
- collaborating, distributed management daemons
 - multicast expanding-ring discovery
 - distributed resource reservation
 - instantiate + manage virtual network
- non-goals: topology optimization, non-IP VIs, ...
X-Bone Status

- current release: 3.2
 - mature: 10 years of open source availability
- platforms: FreeBSD, Linux
 - unofficial: NetBSD, Cisco
- widely used (by 2003):
 - UCL, UPenn, Aerospace, DOD Canada, Sinica Taiwan
 + more
Follow-On Work at USC/ISI

- parallel inner virtual networks = algorithmic & protocol diversity
- spread-spectrum multiplexer, wrapped inside outer virtual network

- issue: firewalls, NATs, clueless ISPs
 - broken end-to-end connectivity
- solution: relocate real Internet subnet
 - real = routable IP + DNS + no fw + ...
 - tunnel subnet from anchor router
totether router at remote site
Other Related Projects

- **X-Tend (~2003-2007?)**
 - maintain + extend X-Bone as tool for research + education
 - geographically-addressed overlays
- **NetFS (~2002-2004?)**
 - access control for the network stack via a pseudo file system