Exploring
(a bit of the)
Internet Infrastructure

Lars Eggert
lars@eggert.org
2023-6-18
About

• Distinguished Engineer for Internet Standards at NetApp
• Current chair of the Internet Engineering Task Force (IETF)
 • Many other roles since starting at IETF in 2000
• Ph.D. in Computer Science from the University of Southern California (USC) in 2003
• Principal Scientist at Nokia and served on the corporation’s CTO and CEO Technology Councils
• 2009-2014, Adjunct Professor at Aalto University
• 2003-2006, senior researcher at NEC Labs
IETF Work Areas

- **Operations & Management (OPS)**
 - network management & operational best practices

- **Applications & Realtime Media (ART)**
 - application protocols over end-to-end transports

- **Transport (TSV)**
 - end-to-end transmission mechanisms over network paths

- **Routing (RTG)**
 - stable paths across dynamically interconnected networks

- **Internet (INT)**
 - how to carry IP packets over different link layers

- **Security (SEC)**
 - security & privacy at all layers & for all protocols

- **Link Layers**
 - (IEEE, 3GPP, etc.)
IETF
Key Technologies and Protocols

Operations & Management (OPS)
- YANG
- NETCONF
- SNMP
- RADIUS

Applications & Realtime Media (ART)
- HTTP, voice & video, SIP, RTP, email

Transport (TSV)
- TCP, UDP, QUIC, congestion control

Routing (RTG)
- BGP, OSPF, IS-IS, MPLS, RSVP, VPNs, SFC, multicast

Internet (INT)
- IPv6, IPv4, DNS, DHCP, NTP, mobility, multihoming

Security (SEC)
- TLS
- IPsec
- PGP
- S/MIME
- PKIX

Link Layers
(IEEE, 3GPP, etc.)

Making the Internet work better
Internet-Infrastructure-Related Organizations

• Internet Engineering Task Force (IETF)
 • Develops and maintains Internet standards (RFCs) and protocols

• Internet Assigned Numbers Authority (IANA)
 • Coordination of DNS root, IP addresses, & other Internet resources

• Regional Internet Registry (RIR)
 • Manages allocation and registration of IP addresses within a region

• Internet Corporation for Assigned Names and Numbers (ICANN)
 • Coordinates DNS functions; contracts with registries (ccTLDs & others) and registrars (sellers of DNS names)
route -n
<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Genmask</th>
<th>Flags</th>
<th>Metric</th>
<th>Ref</th>
<th>Use</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>172.24.0.1</td>
<td>0.0.0.0</td>
<td>UG</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>ens3</td>
</tr>
<tr>
<td>172.24.0.0</td>
<td>0.0.0.0</td>
<td>255.248.0.0</td>
<td>U</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>ens3</td>
</tr>
<tr>
<td>172.24.0.1</td>
<td>0.0.0.0</td>
<td>255.255.255.255</td>
<td>UH</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>ens3</td>
</tr>
</tbody>
</table>
sudo tcpdump -i ens3 -v -n src port bootps
sudo tcsrc -i ens3 -v -n src port bootps

tcpdump: listening on ens3, link-type EN10MB (Ethernet), snapshot length 262144 bytes
17:38:19.820045 IP (tos 0x0, ttl 64, id 56276, offset 0, flags [none], proto UDP (17), length 328)
 172.24.0.1.67 > 172.24.0.100.68: BOOTP/DHCP, Reply, length 300, xid 0xa6ef96d3, secs 3323, Flags [none]
 Client-IP 172.24.0.100
 Your-IP 172.24.0.100
 Client-Ethernet-Address 00:a0:98:11:cc:4f
 Vendor-rfc1048 Extensions
 Magic Cookie 0x63825363
 DHCP-Message (53), length 1: ACK
 Server-ID (54), length 4: 172.24.0.1
 Lease-Time (51), length 4: 300
 Subnet-Mask (1), length 4: 255.248.0.0
 Default-Gateway (3), length 4: 172.24.0.1
 Domain-Name-Server (6), length 4: 172.24.0.1
 Hostname (12), length 3: "dev"
 Domain-Name (15), length 10: "eggert.org"
Dynamic Host Configuration Protocol (DHCP)

- Each of the (many) DHCP deployment is independent
- No coordination between deployments
- Hence, not typically thought of as Internet infrastructure

“The Dynamic Host Configuration Protocol (DHCP) is a network management protocol used on Internet Protocol (IP) networks for automatically assigning IP addresses and other communication parameters to devices connected to the network using a client–server architecture.”

[Wikipedia]
curl -4 ident.me
curl -4 ident.me

91.190.195.94
lars@dev ~ $ curl -4 ident.me
91.190.195.94
lars@dev ~ $ ip -4 addr show ens3
2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
 link/mcast addr fe80::202:e4ff:fe86:8202/64
 altname enp0s3
 inet 172.24.0.100/13 metric 100 brd 172.31.255.255 scope global dynamic enp0s3
 valid_lft 161sec preferred_lft 161sec
Network Address Translation (NAT)

172.24.0.100

Private Network

Router + NAT

172.24.0.1 | 91.190.195.94

Internet

Server

ident.me

(49.12.234.183)
Network Address Translation (NAT)

• Each of the (many) NAT deployment is independent
• No coordination between deployments
 • Exception: NAT inside/behind NAT
 • This requires extensive coordination/configuration and is difficult to operate
• Servers inside/behind NAT require careful configuration
 • Port forwarding
 • Reverse proxy
• Not typically thought of as Internet infrastructure
lars@dev ~ ip -6 addr show ens3
ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qdisc 1000
 altnames enp0s3
inet6 2a00:ac00:4000:400:2a0:98ff:fe11:cc4f/64 scope global dynamic mngtmp
 addr noprefixroute
 valid_lft 85885sec preferred_lft 13885sec
inet6 fe80::2a0:98ff:fe11:cc4f/64 scope link
 valid_lft forever preferred_lft forever
2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qdisc default
 altnames enp0s3
 inet6 2a00:ac00:4000:400:2a0:98ff:fe11:cc4f/64 scope global dynamic mngtmpaddr noprefixroute
 valid_lft 85885sec preferred_lft 138885sec
 inet6 fe80::2a0:98ff:fe11:cc4f/64 scope link
 valid_lft forever preferred_lft forever

lars@dev ~ ⏯️ ip -6 addr show ens3

lars@dev ~ ⏯️ curl -6 ident.me
2a00:ac00:4000:400:2a0:98ff:fe11:cc4f
IP Address Space Management

- **IANA** (Internet Assigned Numbers Authority) allocates address space to RIRs
- **RIR** (Regional Internet Registry) redistributes in its geographic region
- **Customers** (ISPs and end users) obtain address space from their RIR

APNIC. Understanding address management hierarchy. https://www.apnic.net/manage-ip/manage-resources/address-management-objectives-2/address-management-objectives/
whois -I 91.190.195.94 | grep -Ev '^%|^$' | head -n 14
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>refer</td>
<td>whois.ripe.net</td>
</tr>
<tr>
<td>inetnum</td>
<td>91.0.0.0 - 91.255.255.255</td>
</tr>
<tr>
<td>organisation</td>
<td>RIPE NCC</td>
</tr>
<tr>
<td>status</td>
<td>ALLOCATED</td>
</tr>
<tr>
<td>whois</td>
<td>whois.ripe.net</td>
</tr>
<tr>
<td>changed</td>
<td>2005-06</td>
</tr>
<tr>
<td>source</td>
<td>IANA</td>
</tr>
<tr>
<td>inetnum</td>
<td>91.190.192.0 - 91.190.199.255</td>
</tr>
<tr>
<td>netname</td>
<td>FI-SELTIMIL-20101014</td>
</tr>
<tr>
<td>country</td>
<td>FI</td>
</tr>
<tr>
<td>org</td>
<td>ORG-S031-RIPE</td>
</tr>
<tr>
<td>admin-c</td>
<td>ST5534-RIPE</td>
</tr>
<tr>
<td>tech-c</td>
<td>ST5534-RIPE</td>
</tr>
<tr>
<td>status</td>
<td>ALLOCATED PA</td>
</tr>
</tbody>
</table>
traceroute to ietf.org (104.16.44.99), 30 hops max, 60 byte packets
1 91.190.195.93 [AS51728] 6.541 ms 6.415 ms 6.377 ms
2 * * *
3 * * *
4 * * *
5 * * *
6 62.115.44.164 [AS1299] 11.150 ms 11.307 ms 11.193 ms
7 62.115.122.147 [AS1299] 12.151 ms 12.548 ms 12.447 ms
8 213.248.94.67 [AS1299] 12.403 ms 12.338 ms 12.561 ms
9 104.16.44.99 [AS13335] 12.193 ms 12.432 ms 12.071 ms
Autonomous System (AS)

- The Internet is a network of networks
- Each such network is also sometimes called an Autonomous System
 - Because they retain internal autonomy
- These ASs connect together, often at Internet Exchange Points (IXPs)
- ASs can be peers or have provider/customer relationships
 - This is individually negotiated

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS Number</td>
<td>51728</td>
</tr>
<tr>
<td>AS Name</td>
<td>SELTIMIL-AS, FI</td>
</tr>
<tr>
<td>Organization</td>
<td>Seltimil Oy (FI-SELTIMIL-20101222)</td>
</tr>
<tr>
<td>Abuse contact</td>
<td>abuse@seltimil.fi</td>
</tr>
<tr>
<td>AS Reg. date</td>
<td>2010-10-03 12:42:11</td>
</tr>
<tr>
<td>Peering @IXPs</td>
<td>FICIX 2 (Helsinki): IPv4+IPv6 MTU 1500</td>
</tr>
</tbody>
</table>
ASN lookup for AS1299

AS Number --> 1299
AS Name --> TWELVE99 Arelion, fka Telia Carrier, SE
Organization --> Arelion Sweden AB (SE-TWELVE99-20040510)
Abuse contact --> abuse@twelve99.net
AS Reg. date --> 2020-12-06 01:41:55
Peering @IXPs --> NONE
ASN lookup for AS13335

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS Number</td>
<td>13335</td>
</tr>
<tr>
<td>AS Name</td>
<td>CLOUDFLARENET, US</td>
</tr>
<tr>
<td>Organization</td>
<td>CLOUDFLARENET (Cloudflare, Inc.)</td>
</tr>
<tr>
<td>Abuse contact</td>
<td>abuse@cloudflare.com</td>
</tr>
<tr>
<td>AS Reg. date</td>
<td>2010-07-15 02:12:53</td>
</tr>
<tr>
<td>Peering @IXPs</td>
<td>1-IX UA • 48 IX • ABQIX • AKL-IX (Auckland NZ): AKL-IX • AMS-IX • AMS-IX BA • AMS-IX Caribbean • AMS-IX Chicago • AMS-IX Hong Kong • AMS-IX Lagos: Main • Any2Denver • Any2East • Any2West • APE • AR-IX Cabase • Balkan-IX • BALT-IX: BALT-IX • BBIX Chicago • BBIX Dallas • BBIX Fukuoka • BBIX Hong Kong • BBIX London • BBIX Marseille • BBIX Osaka • BBIX Singapore • BBIX Tokyo • BBIX US-West • BCIX: BCIX Peering LAN • Beirut IX • BelgiumIX: Peeringlan • BFIX Ouagadougou: BFIX Ouaga2000 Peering LAN • Bharat IX – Mumbai: Bharat IX Peering LAN • BiX • B-IX • BIX.BG: Main • BIX Jakarta • BNIX • Borneo-IX • Boston Internet Exchange • btIX: TTPL-LAN • CAS-IX: Main • CATNIX • CHC-IX (China) • Chongqing • Denpasar • Doha • Entebbe • Fukuoka • Geneva • Hong Kong • Irap</td>
</tr>
</tbody>
</table>
Border Gateway Protocol (BGP)

- ASs exchange IP address reachability information via BGP
- Routers participating in the global BGP exchange then compute preferred next hops
- End system traffic is then forwarded to the computed next hop at each router
- `traceroute` makes these paths visible
RPKI & BGPsec

• RPKI connects AS numbers (etc.) to a trust anchor
• Certificate structure mirrors the way in which Ass (etc.) are distributed
• BGPsec provides security for the path of ASes through which a BGP update message propagates

pi@raspberrypi:~ $ sudo traceroute -A -T -n ietf.org
$ sudo traceroute -A -T -n ietf.org
traceroute to ietf.org (104.16.45.99), 30 hops max, 60 byte packets
1 192.168.2.1 [*] 0.550 ms 0.363 ms 0.335 ms
2 62.155.246.159 [AS3320] 1.675 ms 1.621 ms 1.481 ms
3 217.0.203.22 [AS3320] 4.835 ms 217.5.67.242 [AS3320] 4.988 ms 4.621 ms
4 80.156.162.178 [AS3320] 15.259 ms 15.189 ms 15.067 ms
5 * * *
6 195.219.148.122 [AS6453] 5.221 ms * *
7 162.158.108.2 [AS13335] 4.886 ms 162.158.84.53 [AS13335] 5.438 ms 172.70.244.3 [AS13335] 9.078 ms
8 104.16.45.99 [AS13335] 3.779 ms 4.520 ms 4.320 ms
pi@raspberrypi:~ $
Content Delivery Network (CDN)

- A CDN replicates content and services at many different points on the Internet
- Improves user experience, performance and resiliency
- Different types of CDNs
 - DNS-based, anycast
 - For web and other content
 - From hyperscalars and specialized providers

Image: https://blog.paessler.com/hubfs/cdn-orange.png
pi@raspberrypi:~ $ ping -4 -n -c 10 eggert.org
pi@raspberrypi:~ $ ping -4 -n -c 10 eggert.org
PING (91.190.195.94) 56(84) bytes of data.
64 bytes from 91.190.195.94: icmp_seq=1 ttl=54 time=46.5 ms
64 bytes from 91.190.195.94: icmp_seq=2 ttl=54 time=46.0 ms
64 bytes from 91.190.195.94: icmp_seq=3 ttl=54 time=45.9 ms
64 bytes from 91.190.195.94: icmp_seq=4 ttl=54 time=45.8 ms
64 bytes from 91.190.195.94: icmp_seq=5 ttl=54 time=46.1 ms
64 bytes from 91.190.195.94: icmp_seq=6 ttl=54 time=46.0 ms
64 bytes from 91.190.195.94: icmp_seq=7 ttl=54 time=46.1 ms
64 bytes from 91.190.195.94: icmp_seq=8 ttl=54 time=46.2 ms
64 bytes from 91.190.195.94: icmp_seq=9 ttl=54 time=46.0 ms
64 bytes from 91.190.195.94: icmp_seq=10 ttl=54 time=45.9 ms

--- ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9013ms
rtt min/avg/max/mdev = 45.757/46.050/46.472/0.181 ms
pi@raspberrypi:~ $
cat /etc/resolv.conf | grep -v '^#'

nameserver 127.0.0.53
options edns0 trust-ad
search eggert.org

lars@dev ~ resolvectl status ens3

Link 2 (ens3)
Current Scopes: DNS
 Protocols: +DefaultRoute +LLMNR -mDNS -DNSOverTLS
 DNSSEC=yes/supported
Current DNS Server: 172.24.0.1
 DNS Servers: 172.24.0.1 2a00:ac00:4000:400::1
 DNS Domain: eggert.org

lars@dev ~
lars@dev ~ host -a ietf.org
host -a ietf.org

Trying "ietf.org"

;; → HEADER ← opcode: QUERY, status: NOERROR, id: 22796
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;ietf.org. IN ANY

;; ANSWER SECTION:
ietf.org. 294 IN A 104.16.44.99
ietf.org. 294 IN A 104.16.45.99
ietf.org. 294 IN AAAA 2606:4700::6810:2c63
ietf.org. 294 IN AAAA 2606:4700::6810:2d63
ietf.org. 105 IN MX 0 mail.iertf.org.

Received 135 bytes from 127.0.0.53#53 in 4 ms
refer: whois.publicinterestregistry.org

domain: ORG

organisation: Public Interest Registry (PIR)
address: 11911 Freedom Drive,
address: 10th Floor, Suite 1000
address: Reston VA 20190
address: United States of America (the)

contact: administrative
name: Director of Operations, Compliance and Customer Support
organisation: Public Interest Registry (PIR)
address: 11911 Freedom Drive,
address: 10th Floor, Suite 1000
What is DNS?

• DNS is one of the core Internet Protocols required for operation of the Internet
• Routing and DNS are the most important infrastructure protocols as without them nothing else will work
• DNS Provides:
 – Mapping from names to addresses
 – Mechanism to store and retrieve information in a global data store
DNS tree
DNS Elements

• Resolver
 – stub: simple, only asks questions
 – recursive: takes simple query and makes all necessary steps to get the full answer,

• Server
 – authoritative: the servers that contain the zone file for a zone, one Primary, one or more Secondaries,
 – caching: A recursive resolver that stores prior results and reuses them
 • Some perform both roles at the same time.
DNS query

• QNAME: www.ietf.org
• QCLASS: IN
• QTYPE: A.
DNSSEC

- **DNSSEC** provides data authentication and integrity, and authenticated denial of existence
 - but not availability or confidentiality
- DNSSEC digitally signs records with public-key cryptography
- A DNSKEY record is authenticated via a chain of trust
 - Starting with verified public keys for the DNS root zone = the trusted third party
- Domain owners generate their own keys publish them to their registrar
- Which in turn pushes them to the zone operator who signs and publishes them in DNS

Image: https://efficientip.com/glossary/what-is-dnssec/
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Class</th>
<th>TTL</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ietf.org.</td>
<td>300</td>
<td>IN</td>
<td>A</td>
<td>104.16.44.99</td>
</tr>
<tr>
<td>ietf.org.</td>
<td>300</td>
<td>IN</td>
<td>A</td>
<td>104.16.45.99</td>
</tr>
</tbody>
</table>
Conclusion

Covered
- IP addresses
- ASs
- BGP, ~BGPsec
- DNS, ~DNSSEC
- WHOIS
- (DHCP, NAT, CDN)

Not Covered
- Network Time Protocol (**NTP**)
- HTTPS, TLS & WebPKI
- Global services at content layer
- Physical layer (fiber, cables, satellites, etc.)
Thank you!

Questions later? lars@eggert.org